Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Brownian geometry: at the interface between probability theory, combinatorics and mathematical physics.

Ziel

The main purpose of this proposal is to explore the canonical models of planar random geometry that have been introduced in the recent years. We call this theory Brownian geometry because one of the central objects, the Brownian map, arises as the universal scaling limit of many discrete models of large random graphs embedded in the plane, in a way very similar to Brownian motion, which is the continuous limit of many different classes of random paths. The preceding scaling limit holds for the Gromov-Hausdorff distance on compact metric spaces. Furthermore, recent developments show that, in addition to its metric structure, the Brownian map can be equipped with a conformal structure.

Our objectives will be to combine the different approaches to develop a systematic study of the Brownian map and its variants called the Brownian disk and the Brownian plane, as well as of the associated discrete models, which are finite graphs embedded in the plane or infinite random lattices such as the uniform infinite planar triangulation. We will also study random phenomena in random geometry, starting with random walks on infinite random lattices, with the ultimate goal of constructing Brownian motion on our continuous models. A question of importance in mathematical physics is to understand the behavior of statistical physics models in random geometry. Another fundamental question is to connect the conformal structure of the Brownian map with the conformal embeddings that are known to exist for discrete planar maps.

The field of random geometry gives rise to exceptionally fruitful interactions between specialists of probability theory, theoretical physicists and mathematicians coming from other areas, in particular from combinatorics. To ensure the best chances of success for the proposed research, we will rely on the expertise of several members of the Laboratoire de Mathématiques d'Orsay, and on the unique environment of Université Paris-Sud and neighboring institutions.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-ADG - Advanced Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2016-ADG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITE PARIS-SACLAY
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 263 607,00
Adresse
BATIMENT BREGUET - 3 RUE JOLIOT CURIE
91190 GIF-SUR-YVETTE
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Essonne
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 263 607,00

Begünstigte (1)

Mein Booklet 0 0