Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Brownian geometry: at the interface between probability theory, combinatorics and mathematical physics.

Cel

The main purpose of this proposal is to explore the canonical models of planar random geometry that have been introduced in the recent years. We call this theory Brownian geometry because one of the central objects, the Brownian map, arises as the universal scaling limit of many discrete models of large random graphs embedded in the plane, in a way very similar to Brownian motion, which is the continuous limit of many different classes of random paths. The preceding scaling limit holds for the Gromov-Hausdorff distance on compact metric spaces. Furthermore, recent developments show that, in addition to its metric structure, the Brownian map can be equipped with a conformal structure.

Our objectives will be to combine the different approaches to develop a systematic study of the Brownian map and its variants called the Brownian disk and the Brownian plane, as well as of the associated discrete models, which are finite graphs embedded in the plane or infinite random lattices such as the uniform infinite planar triangulation. We will also study random phenomena in random geometry, starting with random walks on infinite random lattices, with the ultimate goal of constructing Brownian motion on our continuous models. A question of importance in mathematical physics is to understand the behavior of statistical physics models in random geometry. Another fundamental question is to connect the conformal structure of the Brownian map with the conformal embeddings that are known to exist for discrete planar maps.

The field of random geometry gives rise to exceptionally fruitful interactions between specialists of probability theory, theoretical physicists and mathematicians coming from other areas, in particular from combinatorics. To ensure the best chances of success for the proposed research, we will rely on the expertise of several members of the Laboratoire de Mathématiques d'Orsay, and on the unique environment of Université Paris-Sud and neighboring institutions.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-ADG - Advanced Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2016-ADG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITE PARIS-SACLAY
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 263 607,00
Adres
BATIMENT BREGUET - 3 RUE JOLIOT CURIE
91190 GIF-SUR-YVETTE
Francja

Zobacz na mapie

Region
Ile-de-France Ile-de-France Essonne
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 263 607,00

Beneficjenci (1)

Moja broszura 0 0