There is increasing awareness that diversity in microbial communities likely plays a critical role in multiple biological processes, from regulating human health to sustaining ecosystem services. Along with advances in molecular technologies, this realisation has seen a rapid growth in efforts to catalogue microbial life, and yet we still have a surprisingly poor understanding of the mechanisms maintaining microbial diversity. The overarching goal of the project was to investigate whether recent theoretical advances in understanding coexistence in non-equilibrium systems can provide insights into microbial diversity exposed to antimicrobials that naturally vary in concentration in space and time. From an applied perspective, understanding the dynamics of bacterial systems is fundamental to the management of infectious diseases. Antimicrobial resistance arising from adaptive evolution in bacterial populations has emerged as one of the single greatest threats to public health in Europe and worldwide. As part of efforts to combat antimicrobial resistance, there is growing awareness that we need to look beyond one-to-one host pathogen relationships and consider the full web of interactions in which pathogenic species are embedded.