Cel
The goal of MesuR is to deepen our knowledge of geometric and dynamical properties of a class of metric-measure spaces, called sub-Riemannian (sR) manifolds. These are generalizations of Riemannian manifolds, naturally arising in the frame of control theory and hypoelliptic operators. SR geometry is a theory in expansion, and it recently received a great impulse thanks to two ERC-StG on this topic: “GeCoMethods” (2010-2016, PI: U. Boscain), and “GeoMeG” (2017–now, PI: E. Le Donne).
In this action we focus on sR manifolds endowed with intrinsic measures. These have been introduced in the frame of geometric control theory: as a key novelty, they are allowed here to have singularities, opposite to the smooth measures usually employed in the existing literature on geometry and analysis in sR manifolds. In this framework, we aim at proving:
(1) sR isoperimetric inequalities for singular measures, and investigate relations with the standing Pansu’s conjecture about the shape of isoperimetric sets in the Heisenberg group;
(2) Essential self-adjointness and stochastic completeness of the intrinsic sR Laplacian, amounting to prove the conjectured confinement of the heat and of quantum particles to the non-singular region;
(3) Heat kernel estimates, i.e. qualitative informations on the solutions to the Heat equation for the intrinsic sR Laplacian.
Our objectives will follow by proving suitable functional inequalities encoding geometric properties of the underlying space, that we call metric-measure inequalities. This will be done thanks to an original interaction between variational and control theoretic techniques, respectively typical of the backgrounds of the applicant and of the Supervisor. Through this innovative point of view, we will obtain new results in the context of sR geometry and provide new techniques to study geometry and dynamics on metric-measure spaces presenting singularities.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2017
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
75006 PARIS
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.