Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Photoactivatable Sensors and Blinking Dyes for Live-Cell, Single-Molecule Localization Microscopy

Opis projektu

Obrazowanie pojedynczych cząsteczek w komórkach w krótkich i długich skalach czasowych

Komórki ukazane na rycinach w klasycznych podręcznikach zawierają kilka organelli, natomiast cytoplazma i nukleoplazma wydają się być puste. W rzeczywistości komórki są jednak pełne cząsteczek, które oddziałują na siebie nawzajem, tworząc liczne, często nietrwałe molekuły w ramach złożonych kaskad sygnałowych. Interakcje te są bardzo krótkie i zachodzą na niewielkie lub stosunkowo duże odległości. Zespół finansowanego ze środków UE projektu HDPROBES pracuje nad dwiema wysoce zaawansowanymi technikami, które pozwolą lepiej przyjrzeć się reakcjom zachodzącym w żywych komórkach. Jedna pozwoli uchwycić pojedyncze nietrwałe cząsteczki, zanim się one rozpadną, a druga umożliwi poklatkowe śledzenie pojedynczych molekuł bez użycia toksycznych barwników. Metody te mogą zrewolucjonizować naszą wiedzę na temat sygnalizacji komórkowej.

Cel

In this proposal, we introduce two new families of probes for live-cell super-resolution microscopy. The first class comprises small-molecule fluorescent sensors for detecting short-lived, small signaling molecules and active enzymes with single-molecule resolution. The spatiotemporal confinement of biological reactive molecules has been hypothesized to regulate various pathological and physiological processes, but the lack of tools to observe directly these microdomains of biochemical activity has precluded the investigation of these mechanisms. The ability to detect small signaling agents and active enzymes with nanometric resolution in intact live specimens will allow us to study the role of compartmentalization in intracellular signaling at an unprecedented resolution. Our studies will focus on detecting elusive reactive oxygen and nitrogen species directly at their sites of endogenous production. We will also investigate the subcellular distribution of protease activity, focusing on its role in non-apoptotic signaling.
The second class of probes encompasses a palette of fluorescent dyes that switch continuously between dark and emissive forms. This dynamic equilibrium will enable the localization of single molecules in a densely labeled field without the need to apply toxic light for photoactivation. Based on a novel switching mechanism, we will prepare dyes of various emission wavelengths that blink in a controlled way. These dyes will allow us to perform, for the first time, super-resolution, multicolor, time-lapse imaging of live specimens over long time. Initial studies will focus on tracking a transcription factor that migrates from the endoplasmic reticulum to the nucleus to initiate a cellular stress response upon protein misfolding. These studies will provide spatiotemporal details of this important translocation, which takes more than one hour to occur and its observation at the single-molecule level is intractable with current super-resolution methods

System finansowania

ERC-STG - Starting Grant

Instytucja przyjmująca

UNIVERSITAT ZURICH
Wkład UE netto
€ 850 171,19
Adres
RAMISTRASSE 71
8006 Zurich
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 850 171,19

Beneficjenci (2)