Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning.

Opis projektu

Uczenie maszynowe umożliwia odkrywanie reguł rządzących uczeniem się prawdziwych neuronów

Modelowanie jest stosowane praktycznie we wszystkich dziedzinach, od projektowania samolotów po opracowywanie leków. Modele powstają na podstawie danych obserwacyjnych lub eksperymentalnych i udoskonalane za pomocą dodatkowych danych oraz zaawansowanych metod, w tym uczenia maszynowego. Ich przydatność związana jest ze zdolnością do przewidywania odpowiadających rzeczywistości rezultatów i nowych wyników. Modelowanie reguł rządzących zmieniającymi się „wagami” połączeń synaptycznych między neuronami (determinujących plastyczność synaptyczną), stanowiących podstawę procesów uczenia się i pamięci, jest niezwykle trudnym zadaniem. Zespół finansowanego przez UE projektu SynapSeek połączy bogactwo opublikowanych danych z zaawansowanymi metodami uczenia maszynowego w celu „odkrywania” reguł dotyczących plastyczności synaptycznej in silico.

Cel

How do we learn to dance, play an instrument, or a game as complex as chess or go? How do we make a memory? The common answer to these questions is “through synaptic plasticity”, through changing the synaptic connectivity of neural circuits so that representative brain activity can be reliably triggered. Such connectivity changes are governed by rules, i.e. synaptic mechanisms which monitor the activity of their environment and stereotypically strengthen or weaken synapses accordingly. The shape and mode of operation of these rules is still largely unknown: For the more than hundred different connection types in cortical circuits, only a handful of rules has been described at all. Similarly, testing observed rules in simulations of cortical function has only seen limited success. Our slow progress is due to the extraordinary difficulty of measuring and observing synapses without interference.

Here, we propose a new approach. By utilizing the growing power of machine learning methods we can deduce synaptic plasticity rules directly. Newly developed search algorithms and sheer computational power allow us to integrate published data and infer synaptic rules in silico. We aim to (1) develop a new mathematical expression of synaptic plasticity rules, experimentally appropriate and flexible enough to be implemented in a Machine Learning framework, dubbed SYNAPSEEK. Next (2), we will apply SYNAPSEEK to deduce the rules for building various neural structures with increasing complexity. Finally (3), we will incorporate additional constraints to SYNAPSEEK to develop synaptic rules that shape network function as much as its structure. Our work will establish, for the first time, canonical sets of synaptic plasticity rules, based on the circuit structure they must produce, and the function they are meant to support. SYNAPSEEK will have immediate and wide ranging applications, from a basic understanding of cortical development to better protocols for Deep Brain Stimulation.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2018-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 768 919,41
Adres
Am Campus 1
3400 KLOSTERNEUBURG
Austria

Zobacz na mapie

Region
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 768 919,41

Beneficjenci (1)

Moja broszura 0 0