Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Deciphering the Role of Huntingtin in Energy Supply for Axonal Transport in Health and Huntington’s Disease

Projektbeschreibung

Zur physiologischen und pathophysiologischen Rolle des Huntingtin-Proteins bei der Huntington-Krankheit

Die Huntington-Krankheit ist eine erbliche, fortschreitende Erkrankung des Gehirns, einhergehend mit gestörter Muskelsteuerung sowie kognitiven und psychischen Störungen, da Teile des Gehirns langsam zerstört werden. Die Diagnose ist bislang schwierig. Auslöser der Huntington-Krankheit ist eine Mutation im HTT-Gen, das für das Protein Huntingtin kodiert. Huntingtin übernimmt den schnellen axonalen Abtransport des Neurotrophins (brain-derived neurotrophic factor, BDNF), was wiederum Voraussetzung für eine gesunde Gehirnfunktion ist. Das Projekt FUELING-TRANSPORT untersucht, welche Rolle neuronale Aktivitäten bei der Modulation und Energieversorgung des schnellen Transports spielen, sowie mögliche Einflüsse einer HTT-Mutation. Dabei soll geklärt werden, wie neuronale Aktivität, Energiestoffwechsel bzw. BDNF-Transport mit HTT zusammenhängen, um mehrere therapeutische Zielstrukturen zu finden.

Ziel

Fast axonal transport (FAT) of brain-derived neurotrophic factor (BDNF) is essential for brain function. It depends on huntingtin (HTT), the protein that when mutated causes Huntington’s disease (HD), a devastating and still incurable disorder. Unmet scientific needs: BDNF is regulated by neuronal activity and its transport requires energy. Yet we do not know if FAT of BDNF is regulated by neuronal activity and if HTT facilitates activity-dependent transport. The energy sources for FAT of BDNF and their regulation by activity remain unclear, as do the exact mechanisms of BDNF transport reduction in the HD-causing mutation. Novel hypothesis: HTT plays a key role in channeling energy by coupling energy production by glycolytic enzymes on vesicles to consumption by molecular motors for efficient axonal transport. This function is altered in HD and plays a crucial role in disease progression. By providing energy directly to vesicles, we can restore transport and slow down neurodegeneration in HD. Aim 1: investigate energy sources for axonal transport and their regulation by HTT upon high neuronal activity. Aim 2: investigate how pathogenic mutation in HTT affects response to neuronal activity and vesicles capacity to produce energy. Aim 3: restore energy sources in HD to rescue axonal transport and slow down neurodegeneration. Impact. This work will advance the understanding on how electrical activity essential for brain function regulates energy metabolism to fuel transport, specifically transport of BDNF. We will reveal essential new knowledge on the HTT function and dysfunction. This will likely lead to novel therapeutic strategies for HD. Feasibility: we have expertise in developing innovative microfluidic circuits for studying axonal transport in reconstituted neuronal circuits and in identifying new metabolic and signaling pathways. This, together with my expertise on HTT biology, puts my lab in a unique position to fulfill this ambitious programme.

Finanzierungsplan

ERC-ADG - Advanced Grant

Gastgebende Einrichtung

UNIVERSITE GRENOBLE ALPES
Netto-EU-Beitrag
€ 2 369 941,00
Adresse
621 AVENUE CENTRALE
38058 Grenoble
Frankreich

Auf der Karte ansehen

Region
Auvergne-Rhône-Alpes Rhône-Alpes Isère
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 369 941,00

Begünstigte (1)