Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Non-Markovian Memory-Based Modelling of Near- and Far-From-Equilibrium Dynamical Systems

Descrizione del progetto

Comprendere e prevedere i dati di serie temporali

Le serie temporali caratterizzano diversi sistemi che possono variare dal movimento dei protoni al tasso di cambio dollaro/yen. Per comprendere, confrontare, classificare e prevedere i dati di serie temporali si utilizzano generalmente le equazioni differenziali stocastiche, diversi modelli di passeggiata aleatoria () e algoritmi di apprendimento automatico che, però, lasciano senza risposta domande fondamentali. Per superare questo problema, il progetto NoMaMemo, finanziato dall’UE, si propone di creare una piattaforma generica per analizzare, comprendere, confrontare, classificare e prevedere i dati delle serie temporali e ottimizzare i sistemi stocastici. Il progetto fornirà una descrizione unificata dei dati generici delle serie temporali in termini di equazioni integro-differenziali stocastiche non lineari basate su funzioni di memoria estratte dai dati. Grazie al suo approccio, il progetto farà progredire in modo significativo la comprensione di molteplici sistemi e processi scientifici.

Obiettivo

Time series characterize diverse systems, examples in this proposal are: i) Proton motion in an inhomogeneous aqueous environment, ii) folding and unfolding of a peptide described by a suitably chosen reaction coordinate, iii) migration of a living cell on a substrate, iv) US Dollar / Yen exchange rate. Examples i) and ii) are close-to-equilibrium, iii) is a far from equilibrium since energy is constantly dissipated, while example iv) at first sight defies the classification into equilibrium or non-equilibrium.
For the understanding, comparison, classification and forecasting of time series data, stochastic differential equations, diverse random walk models, and more recently, machine-learning algorithms are commonly used. But fundamental questions remain unanswered: Is a unified description of such diverse systems possible? What is the relation between different proposed models? Can the non-equilibrium degree of a time series be estimated?
NoMaMemo provides a unified description of generic time series data in terms of non-linear integro-differential stochastic equations based on memory functions that are extracted from data. NoMaMemo accounts for non-linear and non-equilibrium effects as well as for non-Gaussian noise and connects with fundamental concepts such as equilibrium statistical mechanics, response theory and entropy production. The general formulation contains previously proposed models and thus allows their comparison, forecasting quality will be compared with modern machine-learning algorithms. NoMaMemo creates a generic platform to analyse, understand, compare, classify and predict time series data and to optimize stochastic systems with respect to search efficiency, barrier-crossing speed or other figures of merit. NoMaMemo will significantly advance the understanding of chemical reaction and protein folding kinetics, the interpretation of THz and IR spectroscopy of liquids and the analysis of living matter and socio-economic data.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2018-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

FREIE UNIVERSITAET BERLIN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 983 744,00
Indirizzo
KAISERSWERTHER STRASSE 16-18
14195 BERLIN
Germania

Mostra sulla mappa

Regione
Berlin Berlin Berlin
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 983 744,00

Beneficiari (1)

Il mio fascicolo 0 0