Descrizione del progetto
Comprensione dei processi naturali attraverso equazioni differenziali a derivate parziali
Le leggi fisiche sono codificate matematicamente in Equazioni differenziali a derivate parziali (PDE) le quali ci dicono in che modo determinate quantità, come calore, acqua o automobili, dipendono dalla posizione e dal tempo. Informazioni precise sui processi fondamentali del mondo naturale si basano in larga misura sulle PDE; a loro volta, questi processi suggeriranno soluzioni a problemi matematici. Il progetto techFRONT, finanziato dall’UE, studierà le proprietà delle soluzioni irregolari di alcune PDE. La ricerca del progetto cercherà di rispondere a due quesiti: se le soluzioni inizialmente irregolari diventano regolari dopo un po’ di tempo e se le PDE sono utili per la crescita (grande) di dati iniziali. Studierà anche come le soluzioni si comportano nel modo più quantitativo, usando barriere esplicite o comprendendo il comportamento a lungo termine delle PDE.
Obiettivo
Physical laws are mathematically encoded into partial differential equations (PDEs). They tell us how certain quantities---like heat, water, or even cars---depend on position and time. Even without knowing the solutions explicitly, the ultimate goal of this project is to investigate fine properties of irregular solutions of certain classes of PDEs: can we predict the behaviour of the solution by using barriers; how will the solution behave after a long time has passed; can irregular solutions become regular---possibly classical; are the problems well-posed even for growing initial data? In practice, such properties describe the underlying physical model. Indeed, the mathematical insight provides new knowledge about the real-world applications, and information about the application gives hints to solutions of mathematical problems.
We aim to use new and innovative techniques to prove fine properties of solutions of generalized porous medium equations (GPME). We intend to build a solution theory for a new class of weak solutions. This includes general well-posedness, regularity theory, and asymptotic behaviour. Our approach will provide an alternative to established methods due to DeGiorgi-Nash and Moser which seems to be unsuitable in this context. When there is convection present in GPME, that is, when we have a convection-diffusion equation (CDE), we plan to explore the possibilities of using the new to theory for GPME to shed new light on the asymptotic behaviour for CDE.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
- scienze sociali legge
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2018
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
28049 MADRID
Spagna
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.