Opis projektu
Odblokowanie mechanizmów rozwoju kończyn
Wiele osób cierpi na schorzenia lub wady wrodzone wpływające na funkcje stawów i kończyn, które poważnie wpływają na ich codzienne życie. Dlatego wiele uwagi poświęca się zbadaniu mechanizmów leżących u podstaw funkcjonowania stawów i tworzenia się kończyn. Finansowany przez UE projekt COMPLIMB ma na celu stworzenie przełomowego modelu obliczeniowego pozwalającego przewidywać rozwój kończyn u kręgowców. Model pozwoli dokładnie zbadać wpływ określonych zmian na rozwój stawów i wzrost kończyn. Te obserwacje zostaną następnie połączone w jeden potężny model obliczeniowy. Model ten ma szansę stać się ważnym narzędziem prognostycznym, które pozwoli lepiej leczyć deformacje stawów i poprawi wykrywanie wad wrodzonych u ludzi.
Cel
Understanding the roles of motion and mechanotransduction in joint formation holds promise for the study and treatment of joint deformities in humans. Joint development has been widely studied in axolotls (Ambystoma mexicanum), as these animals regrow whole limbs throughout their life. Axolotl limbs are morphologically similar to human limbs and utilize the same biological rubrics as ontogenic growth. To draw from the therapeutic potential of these similarities, we propose to build a multi-scale multi-physics computational model for the prediction of vertebrate limb development. Our model will be based on in vivo data obtained using novel imaging techniques via NSF-funded experiments on axolotl limb growth, and will be utilised to determine the physical mechanisms of normal and pathological joint morphogenesis. To this end, in AIM 1 we will build a finite element model of growth at the tissue level to study how specific changes in limb motion regulate joint morphology. Next, in AIM 2 we will build a model of growth at the molecular level to determine how biochemical and biomechanical signalling pathways interact during normal and pathological joint development. Finally, in AIM 3 we will integrate both experimental and computational data from the different length scales into a single multi-scale mechano-biochemical model of vertebrate limb growth. A computational model that links the biomechanics and biochemistry of normal and pathological limb development at the subcellular, cellular and tissue scales is a powerful predictive tool. We envisage this tool will be utilised to optimise treatment therapies for joint deformities and better inform the preventive screening of congenital defects in humans.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
- nauki przyrodniczenauki biologicznebiochemia
- nauki przyrodniczenauki biologicznebiofizyka
- nauki przyrodniczeinformatykanauki obliczeniowesymulacje wielofizyczne
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Program(-y)
Temat(-y)
System finansowania
MSCA-IF-GF - Global FellowshipsKoordynator
08034 Barcelona
Hiszpania