Projektbeschreibung
Definierbare und pseudoendliche Gruppen
Das EU-finanzierte Projekt DEFGROUP erforscht Logik (Modelltheorie) und Algebra (Gruppentheorie), indem es Gruppen untersucht, die als „definierbar erster Ordnung“ in Strukturen bekannt sind, welche bestimmte modelltheoretische Restriktionen erfüllen. Das Projekt arbeitet an dem Nachweis, dass in „zahmen“ Feldern definierbare Gruppen in enger Beziehung zu den rationalen Punkten einer algebraischen Gruppe stehen. Im Rahmen des Projekts wird außerdem an dem Beweis gearbeitet, dass das lösbare Radikal jeder pseudoendlichen Gruppe mit einer einfachen Theorie lösbar ist. Ziel des Projekts ist auch, zu demonstrieren, dass jede unendliche Gruppe, die in einem pseudoendlichen Feld (oder in einer pseudoendlichen Struktur) definiert werden kann, pseudoendlich ist.
Ziel
The proposed research links logic (model theory) and algebra (group theory). It explores groups which are first-order definable in structures that satisfy certain model-theoretic restrictions. The structures, here called `tame’, are stable, simple, NIP, or NTP2, concepts from Shelah's `generalised stability theory'. WP 1 concerns groups definable in tame fields, possibly equipped with extra operators. The aim is to show that a definable group in such fields must be closely related to the rational points of an algebraic group and to investigate the structure fixed pointwise by a generic automorphism in a generic differential difference field. WP 2 revolves around pseudofinite groups (infinite groups satisfying every sentence true of all finite groups), and gives a model theoretic perspective on finite group theory. One goal is to prove that the soluble radical of any pseudofinite group with a simple theory is soluble. Another is to solve the following question, possibly with a pseudofinite counterexample: given a `tame’ group G and a soluble subgroup H of G, is there a definable soluble subgroup of G containing H? The final WP2 objective concerns primitive pseudofinite permutation groups and in particular the question whether elementary extensions preserve primitivity. The two Workpackages are well-linked: for example, any infinite group definable in a pseudofinite field (or in any pseudofinite structure) is pseudofinite. The Fellow, Hempel, will receive training through research in Leeds, from the supervisor Macpherson and from the wider model theory group. She will benefit from the background of Macpherson on pseudofinite groups and permutation groups, and the broader experience of other Leeds model theorists. She will transfer to Leeds specific expertise on conditions such as NTP2, and on tame groups. She will receive training and opportunities complementary to her previous experience, on topics such as outreach, project management, and PhD student support.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik mathematische Logik
- Naturwissenschaften Mathematik reine Mathematik Algebra
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2018
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
LS2 9JT Leeds
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.