Descrizione del progetto
Gruppi definibili e pseudofiniti
Il progetto DEFGROUP, finanziato dall’UE, sta esplorando la logica (teoria dei modelli) e l’algebra (teoria dei gruppi), studiando gruppi noti come «definibili al primo ordine» in strutture che soddisfano determinate restrizioni teoriche dei modelli. Il progetto sta lavorando per mostrare che i gruppi definibili in campi coltivati sono strettamente correlati ai punti razionali di un gruppo algebrico. Il progetto sta inoltre lavorando per dimostrare che il radicale solubile di qualsiasi gruppo pseudofinito con una teoria semplice è solubile. Il progetto è volto anche a dimostrare che qualsiasi gruppo infinito definibile in un campo di pseudofinito (o in qualsiasi struttura pseudofinita) è pseudofinito.
Obiettivo
The proposed research links logic (model theory) and algebra (group theory). It explores groups which are first-order definable in structures that satisfy certain model-theoretic restrictions. The structures, here called `tame’, are stable, simple, NIP, or NTP2, concepts from Shelah's `generalised stability theory'. WP 1 concerns groups definable in tame fields, possibly equipped with extra operators. The aim is to show that a definable group in such fields must be closely related to the rational points of an algebraic group and to investigate the structure fixed pointwise by a generic automorphism in a generic differential difference field. WP 2 revolves around pseudofinite groups (infinite groups satisfying every sentence true of all finite groups), and gives a model theoretic perspective on finite group theory. One goal is to prove that the soluble radical of any pseudofinite group with a simple theory is soluble. Another is to solve the following question, possibly with a pseudofinite counterexample: given a `tame’ group G and a soluble subgroup H of G, is there a definable soluble subgroup of G containing H? The final WP2 objective concerns primitive pseudofinite permutation groups and in particular the question whether elementary extensions preserve primitivity. The two Workpackages are well-linked: for example, any infinite group definable in a pseudofinite field (or in any pseudofinite structure) is pseudofinite. The Fellow, Hempel, will receive training through research in Leeds, from the supervisor Macpherson and from the wider model theory group. She will benefit from the background of Macpherson on pseudofinite groups and permutation groups, and the broader experience of other Leeds model theorists. She will transfer to Leeds specific expertise on conditions such as NTP2, and on tame groups. She will receive training and opportunities complementary to her previous experience, on topics such as outreach, project management, and PhD student support.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura matematica discreta logica matematica
- scienze naturali matematica matematica pura algebra
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2018
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
LS2 9JT Leeds
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.