Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Definable and pseudofinite groups

Opis projektu

Grupy definiowalne i pseudoskończone

Finansowany przez UE projekt DEFGROUP bada logikę (teorię modeli) oraz algebrę (teorię grup), przyglądając się bliżej grupom określanym mianem definiowalnych pierwszego rzędu w strukturach spełniających pewne ograniczenia modelowo-teoretyczne. Badacze skupieni wokół projektu dążą do wykazania, że grupy definiowalne w polach oswojonych są ściśle połączone z racjonalnymi punktami grupy algebraicznej. Naukowcy pracują również nad udowodnieniem, że rozwiązalny pierwiastek dowolnej pseudoskończonej grupy z prostą teorią jest rozwiązalny. Celem projektu jest również wykazanie, że dowolna nieskończona grupa definiowalna w pseudoskończonym polu (lub dowolnej innej pseudoskończonej strukturze) jest pseudoskończona.

Cel

The proposed research links logic (model theory) and algebra (group theory). It explores groups which are first-order definable in structures that satisfy certain model-theoretic restrictions. The structures, here called `tame’, are stable, simple, NIP, or NTP2, concepts from Shelah's `generalised stability theory'. WP 1 concerns groups definable in tame fields, possibly equipped with extra operators. The aim is to show that a definable group in such fields must be closely related to the rational points of an algebraic group and to investigate the structure fixed pointwise by a generic automorphism in a generic differential difference field. WP 2 revolves around pseudofinite groups (infinite groups satisfying every sentence true of all finite groups), and gives a model theoretic perspective on finite group theory. One goal is to prove that the soluble radical of any pseudofinite group with a simple theory is soluble. Another is to solve the following question, possibly with a pseudofinite counterexample: given a `tame’ group G and a soluble subgroup H of G, is there a definable soluble subgroup of G containing H? The final WP2 objective concerns primitive pseudofinite permutation groups and in particular the question whether elementary extensions preserve primitivity. The two Workpackages are well-linked: for example, any infinite group definable in a pseudofinite field (or in any pseudofinite structure) is pseudofinite. The Fellow, Hempel, will receive training through research in Leeds, from the supervisor Macpherson and from the wider model theory group. She will benefit from the background of Macpherson on pseudofinite groups and permutation groups, and the broader experience of other Leeds model theorists. She will transfer to Leeds specific expertise on conditions such as NTP2, and on tame groups. She will receive training and opportunities complementary to her previous experience, on topics such as outreach, project management, and PhD student support.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2018

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITY OF LEEDS
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 224 933,76
Adres
WOODHOUSE LANE
LS2 9JT Leeds
Zjednoczone Królestwo

Zobacz na mapie

Region
Yorkshire and the Humber West Yorkshire Leeds
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 224 933,76
Moja broszura 0 0