Periodic Reporting for period 1 - BIOCONTACT (Contact Mechanics of Soft and Complex Biological Tissues)
Okres sprawozdawczy: 2019-04-01 do 2021-03-31
Several real-life applications will benefit from this study as it provides, for instance, the chance to model the contact between the eyelid, the contact lens and the cornea epithelium, thus allowing for the optimization of the contact lens mechanical and biological compatibility against the surrounding tissues. By exploiting BIOCONTACT results, advanced contact mechanics studies could be led to specifically take into account for the thickness and viscoelasticity of the eyelid tissue, eventually allowing for the optimization of the lens in terms of surface roughness, thickness and adhesion energy, aiming at enhancing the final user comfort. Similarly, also the mechanical compatibility of prosthetic bones with surrounding tissues (e.g. muscles or connective tissues) will be enhanced by means of BIOCONTACT results, as the accurate prediction of the contacting normal and tangential stresses acting on the soft biological tissues provides an efficient tool to reduce bedsores in long-term bedridden patients.
For these reasons, the main objective of BIOCONTACT was to develop an advanced contact mechanics model able to accurately describe the contact behavior of elastic/viscoelastic thin layers in the presence of repulsive and adhesive interfacial interactions, which could therefore be employed in investigating the mechanical behavior of biological contacts involving thin tissues with specific interfacial interactions. Moreover, aiming at allowing the broadest possible field of applications to benefit from the project output, we sought for a parametric model which can be also adopted in studying the general-purpose contact mechanics of rubber-like materials.
Moreover, due to the generic nature of the BEM-like formulation developed in BIOCONTACT, the solver can be exploited in investigating different physical problems related real-like applications ranging from adhesive peeling behavior of Band Aids and wound dressing against skin to the nonlinear damping provided by thin rubber layers in seismic isolators.
These results have led to five publications on prestigious scientific journals; nonetheless, calculations are still ongoing, and two manuscripts are in preparation to further disseminate the project results in the scientific community. Similarly, scientific talks have been provided in specialized conferences to guarantee the highest possible outreach to the methodology developed during the project.
Peculiar applications of this tool will likely spread, among the others, to the investigation of dry viscoelastic contacts in the presence of adhesive interfacial interactions, such as those involved in biomedical devices design (e.g. band-aids and wound dressing peeling) and industrial packaging issues (e.g. thin film removal from soft goods).
In the long long-term, we may predict a significant beneficial effects of the theoretical and methodological advances delivered by the project on different real-life applications. Among the others, the opportunity to increase the mechanical compatibility of bio-medical tools in direct contact with the skin, by considering both the interfacial normal pressure and tangential shear stress, is probably one of the most effective. Indeed, recent studies have shown that in preventing pressure ulcers and bed sores, which cost about £2 billion per annum in the sole UK, the effect of the shear stress acting on the skin surface cannot be neglected; therefore, BIOCONTACT mechanical model represents a key opportunity to optimize the fabric properties to control contact interfacial stresses. Interestingly, also the face masks market (which has recently experienced a rapid rise due to Covid-19 pandemic) could benefit of similar developments. In this case, the increased wearing comfort might also lead to a wider use of the masks, with corresponding long-term societal benefit in contrasting not only the Covid-19 pandemic, but any further diffusion of diseases by aerosol.
Moreover, thanks to the specific formalism adopted, the BIOCONTACT model can be easily generalized for applications very different from biological tissues. For instance, the contact mechanics behavior of rubber-like thin viscoelastic layers can be investigated.