Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Design and engineering of porous nitride-based materials as a platform for CO2 photoreduction

Descrizione del progetto

La fotocatalisi sulla via della riduzione di CO2

La tabella di marcia europea per l’energia 2050 mira a garantire la sicurezza e la sostenibilità energetica nelle future economie decarbonizzate. In questo senso, è necessario trovare percorsi efficienti per la produzione di energia solare. L’uso di CO2 per limitare la carbonizzazione richiede una ricerca accurata sulla fotoriduzione della CO2, che continua a essere poco studiata perché, sebbene la fotocatalisi sia un potenziale percorso in questa direzione, la creazione di un fotocatalizzatore efficace e affidabile è ancora difficile. Il progetto THEIA, finanziato dall’UE, suggerisce una nuova classe di fotocatalizzatori che emerge dalla combinazione di catalisi, scienza dei materiali e ingegneria. La proposta studia le proprietà del nitruro di boro (BN) poroso per conferirgli proprietà chiave per la riduzione di CO2 attraverso la fotocatalisi.

Obiettivo

CONTEXT: Reshaping our energy portfolio considering the sustainability of global energy resources is central to the European Energy Roadmap 2050. Hence, researchers need to identify efficient routes towards solar fuels production. Unlike H2 evolution, CO2 photoreduction has been poorly studied. Given the scope for CO2 utilisation in a carbon-constrained future, there is an exciting opportunity to devote targeted research towards CO2 photoreduction. Photocatalysis is one route towards CO2 reduction. Yet, the design of a cost-effective, sustainable, efficient and robust photocatalyst remains a highly challenging task.
PROPOSAL: I propose to merge catalysis, materials science and engineering to develop a radically new class of photocatalysts, i.e. porous boron nitride (BN)-based materials for CO2 reduction. My approach is opposite to current research trends which explore non-crystalline and non-porous materials, and aims to compete with the 40-year old benchmark in the field, TiO2. Porous BN combines key attributes for CO2 photoreduction: (i) chemical, structural and optoelectronic tunability, (ii) high porosity, (iii) semi-crystalline to amorphous nature. These features provide unique pathways towards effective sorption of reactants/products, facile band gap engineering, and enhanced surface charge transfer. Their semi-crystalline to amorphous nature may facilitate scale-up.
IMPACT: I will address three major challenges:
1. Creating a porous BN-based material platform with adsorptive and photocatalytic functionalities
2. Adding a new dimension to photocatalyst design via porosity control
3. Creating approaches to molecular- and micro-structure engineering in porous BN
Realization of these advances would lead towards a ‘dream photocatalyst’ with integrated adsorptive, optoelectronic and catalytic functionalities. The impact will benefit fields for which interfacial phenomena are key: molecular separation, catalysis and drug delivery.

Meccanismo di finanziamento

ERC-STG - Starting Grant

Istituzione ospitante

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contribution nette de l'UE
€ 1 498 934,00
Indirizzo
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Westminster
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 498 934,00

Beneficiari (1)