Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Critical and supercritical percolation

Projektbeschreibung

Neue Studie untersucht wichtige mathematische Grundlagen der Perkolationstheorie

Der Perkolationstheorie zufolge wird untersucht, wie voneinander unabhängige zufällige Eingaben, die gleichmäßig auf einem Gitter oder im Raum verteilt sind, makroskopische Strukturen ergeben. Ein Beispiel dafür ist die Ausbreitung von Epidemien oder Waldbränden. Ungeachtet beeindruckender Fortschritte auf diesem Gebiet gibt es auf einige grundlegende Fragen immer noch keine mathematische Antwort. Zwei bemerkenswerte Beispiele, welche die Motivation der Forschung im Rahmen des EU-finanzierten Projekts CriSP bilden, sind die Kontinuität des dreidimensionalen Phasenübergangs für die Bernoulli-Perkolation und die Universalität der planaren Perkolation. Projektziel sind Fortschritte bei diesen ungeklärten Problemen, indem neue Verbindungen zwischen der Perkolationstheorie und anderen Gebieten der Mathematik oder der theoretischen Informatik hergestellt werden. Die Ergebnisse werden aufgrund des Ausbaus der Brücken zwischen verschiedenen Disziplinen voraussichtlich einen weitreichenden Einfluss auf die Mathematik und zahlreiche Anwendungen in anderen Bereichen haben.

Ziel

Percolation studies how independent random input that is spread uniformly on a lattice or in space gives rise to macroscopic structures. This model, initially introduced to understand porosity, has turned out to be central for understanding fundamental features of real-world phenomena, ranging from phase transitions in physical and chemical systems to stability of Boolean functions with respect to perturbations. Over the last sixty years, a number of important mathematical results have been obtained concerning percolation, with ideas, interactions and consequences in mathematical fields such as probability, combinatorics, complex analysis, geometric group theory, planar topology and theoretical computer science. Highlights include the rigorous derivation of a number of features that are shared with other models from statistical physics: sharpness of phase transitions, renormalization theory, existence of scaling limits and critical exponents, relationship between discrete and continuous descriptions (constructive field theory)...
The story is however incomplete, as some of the most fundamental questions have not yet found a mathematical answer. Two notable examples that motivate the present research proposal are the continuity of the phase transition for Bernoulli percolation in dimension three (does the macroscopic structure appear continuously?) and the universality of planar percolation (are the macroscopic features of critical percolation in two dimensions independent of the microscopic model under consideration?).
In light of very recent progress, we propose here a list of interrelated projects, with the global aim of developing new tools that should enable us to make progress towards these two open problems. The impact of this study would go beyond the percolation or statistical physics community, as we aim to provide a clean and thorough understanding of some key concepts and phenomena, that would find natural applications in other disciplines.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2019-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 479 675,00
Adresse
Raemistrasse 101
8092 Zuerich
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 479 675,00

Begünstigte (1)

Mein Booklet 0 0