Projektbeschreibung
Neue Instrumente für inverse Probleme der Spektralformanalyse
Im Jahr 1911 zeigte Hermann Weyl, dass das Volumen einer begrenzten Domäne im euklidischen Raum durch die asymptotische Verteilung der Eigenwerte des Dirichlet-Laplace-Operators bestimmt wird. Seine Arbeit inspirierte den Titel eines berühmten Artikels von M. Kac: „Can you hear the shape of a drum?“ (z. Dt.: "Können Sie die Form einer Trommel hören?"). Die Frage bezieht sich darauf, ob die Form einer begrenzten Domäne durch das Spektrum des Dirichlet-Laplace-Operators ermittelt werden kann. Die Existenz isospektraler Domänen (Domänen mit der gleichen Anzahl von Eigenwerten), welche die Form von Ebenen bei Transformationen nicht beibehalten (nicht-isometrisch), stellt jedoch noch immer ein Rätsel dar. Ziel des EU-finanzierten Projekts SPERIG ist es, Instrumente zur Lösung der lokalen inversen Probleme für glatte planare konvexe Domänen und geodätische Strömungen zu entwickeln.
Ziel
In 1911, Hermann Weyl proved the remarkable asymptotic formula describing distribution of (large) eigenvalues of the Dirichlet Laplacian in a bounded domain Ω ⊂ Rd
N (λ) = (2π)−d ωd Vol(Ω) λd/2(1 + o(1)) as λ → +∞. where N (λ) is the number of eigenvalues of the Laplacian spectrum, which are less than λ, ωd is a volume of the unit ball in Rd, Vol(Ω) is the volume of Ω, and the Laplace spectrum of a domain Ω is defined as the set of positive real numbers λ (with multiplicities) that satisfy the eigenvalue problem in Ω with Dirichlet boundary conditions. This result motivated the title of a famous paper by M. Kac “Can you hear the shape of a drum?”. The question is: can the shape of a bounded domain O C Rd be determined by the Laplace spectrum? Two domains are called isospectral if they have the same eigenvalues. Consider the space of domains with a smooth boundary. The existence of isospectral non-isometric domains is a well-known open question.
The first goal of the project is to prove the local spectral rigidity for convex planar domains, i.e. for a smooth convex planar domain Ω the Laplace spectrum determines Ω locally. There are no nearby isospectral non-isometric domains with smooth boundary. All of the these questions can also be posed for Riemannian manifolds. The second goal is to prove the local rigidity for Riemannian manifolds with Anosov geodesic flows.
The third goal is to prove local rigidity for integrable systems: geodesic flows on tori (resp. convex planar billiards). The goal is to prove that an integrable metric close to a Liouville metric is Liouville. The second type is billiards inside smooth planar domains integrable near the boundary. We shall prove that domains with integrable billiards belong to a finite-dimensional manifold.
The focal goal of the project is to develop analytic tools to solve the local inverse problems for smooth planar convex domains and geodesic flows.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-ADG - Advanced Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2019-ADG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
3400 Klosterneuburg
Österreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.