Opis projektu
Bezkompromisowy procesor nowej generacji wspomagający sztuczną inteligencję oferuje wyższą wydajność przy niższym zużyciu energii
W ostatnich latach głębokie sieci neuronowe (ang. „deep neural networks”, DNN), które potrafią symulować ludzkie zdolności percepcyjne, są stosowane z wielkim powodzeniem do rozwiązywania setek problemów w dziedzinie zdrowia, robotyki, finansów i gier. Chociaż osiągają one niezwykle wysoką dokładność dzięki zastosowaniu dużych i głębokich modeli, koszt związany z ich złożonością obliczeniową jest duży. Finansowany przez UE projekt Reexen ma na celu rozwiązanie temu problemu poprzez opracowanie niezwykle wydajnego procesora wspomagającego sztuczną inteligencję, wspierającego aplikacje brzegowe oparte na DNN. Technologia ta wykorzystuje mieszane układy scalone do obliczeń związanych z wnioskowaniem opartym na uczeniu głębokim, przełamując ograniczenia prawa Moore’a dotyczące tradycyjnych obwodów cyfrowych. Konstrukcja chipa umożliwia wykonywanie 30 bilionów operacji na wat na sekundę, co jest wartością znacznie wyższą niż w przypadku czysto cyfrowych akceleratorów sieci neuronowych.
Cel
"Since the breakthrough application of Deep Neural Networks algorithms (DNNs) to speech and image recognition, the number of applications that use DNNs has exploded, achieving the highest accuracy in a myriad of contexts (health, robotics, finance, gaming, etc.). However, their superior accuracy comes at the cost of high computational complexity.
Current approaches to solve this challenge are cloud-based, incurring in high power consumption and high latency, given their communication needs. Although cloud approaches are suitable for some context, they are suboptimal for real-time applications running on embedded or mobile devices (with limited battery capacity and requiring fast responses).
REEXEN appears to bring a solution to this challenge: an extremely efficient AI processor (a semiconductor chip) specifically designed for supporting DNN-based edge applications. By exploiting state-of-the-art semiconductor technologies in mixed-signal circuits and in-memory processing, REEXEN obtains the best power-efficiency when executing DNN algorithms, in terms of maximum throughput per energy unit consumption (30 TOPs/W). By reducing the ""distance"" between data generation (sensors), data storage (memory) and data processing (core processor or nucleus), and by eliminating A/D conversions, REEXEN also achieves minimum latency (<10ms) and fabrication area, thus also reducing the overall cost of production.
REEXEN completely aligns with the EU approach to AI, as an enabling technology that will allow the development of current industry-transversal smart services and the implementation of future new ones.
Our company is 100% focused on developing next generation of ultra-low power neural network processors. From the successful results of our early prototyping for audio applications, REEXEN project will attract the best talent and additional financing to build the business around our technology and increase our company size, international presence and job generation."
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze informatyka sztuczna inteligencja rozpoznawanie obrazów rozpoznawanie obrazów
- inżynieria i technologia inżynieria elektryczna, inżynieria elektroniczna, inżynieria informatyczna inżynieria elektroniczna czujniki
- inżynieria i technologia inżynieria elektryczna, inżynieria elektroniczna, inżynieria informatyczna inżynieria elektroniczna robotyka
- nauki przyrodnicze informatyka nauka o danych przetwarzanie danych
- nauki przyrodnicze informatyka sztuczna inteligencja inteligencja obliczeniowa
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.3. - PRIORITY 'Societal challenges
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
SME-1 - SME instrument phase 1
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-EIC-SMEInst-2018-2020
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
8001 ZURICH
Szwajcaria
Organizacja określiła się jako MŚP (firma z sektora małych i średnich przedsiębiorstw) w czasie podpisania umowy o grant.
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.