Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Metacomputational Complexity Theory

Projektbeschreibung

Fortschritte in der Komplexitätstheorie

Die Komplexitätstheorie untersucht die Unter- und Obergrenzen der Komplexität konkreter Rechenmodelle. Allerdings haben Forscherinnen und Forscher bislang nur wenig Fortschritte bei dem Beweis starker unterer Komplexitätsgrenzen gemacht und sind auf mehrere signifikante Ergebnisse gestoßen, die Hindernisse darstellen. Diese Ergebnisse stellen zwar signifikante Hürden dar, haben aber auch neue strukturelle Eigenschaften von unteren Komplexitätsgrenzen ans Tageslicht gebracht, die untere Grenzen mit der Konstruktion effizienter Lernalgorithmen, der Kryptographie oder unabhängigen Ergebnissen in der mathematischen Logik in Verbindung gebracht haben. Das EU-finanzierte Projekt MCT zielt darauf ab, die strukturellen Verbindungen und komplexitätstheoretischen Eigenschaften von Komplexitätsfragen weiterzuentwickeln. Zu diesem Zweck wird es sich auf Vergrößerungen der Schwere und die strukturelle Theorie konzentrieren. Diese Arbeit wird tiefgreifendere Einblicke in die zentralen Fragen der Komplexitätstheorie liefern.

Ziel

The goal of the project is to advance our understanding of the central questions in Computational Complexity Theory such as the famous P versus NP problem.

Complexity Theory approaches questions about efficiency of computation by investigating lower and upper bounds on the complexity of concrete computational models such as Boolean circuits or propositional proof systems. Unfortunately, even after several decades of intense research the progress on the question of proving strong complexity lower bounds remains very incremental. In fact, several significant barrier results have been discovered, partially explaining the complexity of establishing complexity lower bounds.
While the barrier results presented a serious obstacle they also revealed new structural properties of complexity lower bounds connecting lower bounds to the construction of efficient learning algorithms, cryptography or independence results in mathematical logic. The present project continues the development of these structural connections and complexity-theoretic properties of problems about complexity, which we shortly refer to as Metacomputational Complexity Theory.

The objectives of the project can be divided into two groups.

1. Hardness magnification, exploring limits and consequences of an emerging theory of hardness magnification which arouse recently from investigations of metacomputational aspects of circuit lower bounds and received a lot of attention as a promising approach overcoming previously existing barriers for proving complexity lower bounds.

2. Structural theory, strengthening and generalizing connections between the methods for proving lower bounds and other central concepts of computer science, such as efficient learning algorithms, cryptographic primitives and automatizability of propositional proof systems, through the lens of mathematical logic.

Koordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Netto-EU-Beitrag
€ 212 933,76
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Vereinigtes Königreich

Auf der Karte ansehen

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 212 933,76