Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Combinatorial aspects of Heegaard Floer homology for knots and links

Descrizione del progetto

Espandere le formulazioni combinatorie dell’omologia di Heegaard-Floer

L’omologia di Heegaard-Floer è una strepitosa invariante per studiare gli oggetti chiave della topologia a bassa dimensionalità, specialmente i nodi e i link in 3-varietà. Dato un cobordismo tra due link, è presente una mappa indotta tra le loro omologie di Heegaard-Floer. L’omologia di Heegaard Floer per i nodi e i link nella tri-sfera è calcolabile algoritmicamente utilizzando alcuni approcci combinatoriali. Il progetto MM-CAHF, finanziato dall’UE, ha un duplice obiettivo: espandere le formulazioni combinatorie dell’omologia di Heegaard Floer per includere una classe più ampia di oggetti ed estendere tali formulazioni alle mappe del cobordismo, in modo da rendere anche queste mappe calcolabili algoritmicamente.

Obiettivo

The action's goal is to achieve major advances in Heegaard Floer homology for knots and links. Heegaard Floer homology is a package of powerful invariants for 3-manifolds, and knots and links inside them. Introduced two decades ago, it is now a major research area in low-dimensional topology. To a knot or link in the 3-sphere, together with extra data called `decoration', Heegaard Floer homology associates a bigraded vector space which determines key topological properties of such a knot or link, such as its Alexander polynomial and its Seifert genus. Moreover, given a (decorated) link cobordism between two links, there is a linear map induced between their Heegaard Floer homology. The original definition of Heegaard Floer homology is based on counting pseudo-holomorphic curves in symplectic manifolds, but there exist combinatorial reformulations of the vector spaces associated to decorated knots and links.

The proposal consists of three major projects:

1) Give a combinatorial reformulation of the Heegaard Floer cobordism maps, to make their computation algorithmic, by extending existing combinatorial definitions of the vector spaces associated to decorated knots and links.

2) Extend the most efficient combinatorial reformulation, namely the Kauffman-states functor, from decorated knots to decorated links.

3) Define a combinatorial Heegaard Floer invariant for partially decorated links, for which attempts to give an analytic definition seems unfeasible.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2019

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 139 850,88
Indirizzo
REALTANODA STREET 13-15
1053 Budapest
Ungheria

Mostra sulla mappa

Regione
Közép-Magyarország Budapest Budapest
Tipo di attività
Other
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 139 850,88
Il mio fascicolo 0 0