Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Motives beyond A1-homotopy invariance

Descrizione del progetto

Cambiare le basi (matematiche) per costruire una struttura diversa per uguaglianza

La scienza e l’ingegneria sono campi che si basano fortemente sulla matematica per stabilire relazioni concrete tra diversi parametri e consentire la comprensione dell’evoluzione e dei sistemi di parametri nel tempo. I metodi di omotopia, laddove l’omotopia è una proprietà di due oggetti matematici che possono essere continuamente deformati l’uno nell’altro, sono utili per risolvere sistemi di equazioni non lineari rilevanti per aree che comprendono la robotica, l’ingegneria chimica e la teoria dei circuiti. Negli ultimi due decenni, la teoria dell’omotopia motivica (nota anche come teoria dell’omotopia A1) ha suscitato grande scalpore nella comunità matematica. Combinando componenti di algebra e topologia, essa studia varietà algebriche (insiemi di soluzioni che sono al centro della geometria algebrica) dal punto di vista teorico dell’omotopia. Il progetto MbHI, finanziato dall’UE, sta sviluppando nuove basi per la teoria dell’omotopia motivica che consentirà la sua estensione alla descrizione dell’omotopia non-A1.

Obiettivo

The proposed project is aimed at establishing new foundations of motivic homotopy theory, which enhances Voevodsky's motivic homotopy theory. Voevodsky's motivic homotopy theory is based on A1-homotopy theory, and thus it cannot capture non A1-homotopy invariant phenomena in algebraic geometry such as algebraic K-theory (for singular varieties), topological cyclic homology, logarithmic cohomology, deformation theory, (wild) ramification theory, and so on. Our new foundation is based on projective bundle formula instead of A1-homotopy invariance, so that it has a potential to capture aforementioned non A1-homotopy invariant phenomena. To overcome fundamental difficulties to use projective bundle formula as an input of homotopy theory, we use ``derived correspondence'', which is a derived version of framed correspondence. Another key input is the notion of derived blow-ups, which was used by Kerz, Strunk and Tamme to solve Weibel's conjecture. This project consists of the construction of a new motivic homotopy category and its applications. Applications would include a construction of motivic cohomology (for possibly singular varieties) together with a motivic spectral sequence to algebraic K-theory (Beilinson's conjecture), motivic interpretation of topological cyclic homology, and motivic interpretation of logarithmic cohomology.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2019

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

KOBENHAVNS UNIVERSITET
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 207 312,00
Indirizzo
NORREGADE 10
1165 KOBENHAVN
Danimarca

Mostra sulla mappa

Regione
Danmark Hovedstaden Byen København
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 207 312,00
Il mio fascicolo 0 0