Opis projektu
Nowe fundamenty matematyczne, na których powstanie nowa koncepcja podobieństwa
Nauka i inżynieria to dziedziny, które w dużym stopniu opierają się na matematyce, dzięki której możliwe jest ustalanie konkretnych relacji pomiędzy różnymi parametrami i wgląd w zmiany parametrów oraz ich układy w czasie. Metody homotopii, opierające się na homotopii – właściwości dwóch obiektów matematycznych, które mogą być w sposób ciągły przekształcane w siebie nawzajem – są niezwykle przydatne do rozwiązywania układów równań nieliniowych, wykorzystywanych w obszarach takich jak robotyka, inżynieria chemiczna oraz teoria układów. W ciągu ostatnich kilkudziesięciu lat teoria homotopii A1 wzbudziła spore poruszenie wśród matematyków. Łącząc elementy składowe algebry i topologii, teoria ta odnosi się do rozmaitości algebraicznych (zestawów rozwiązań będących przedmiotem zainteresowania geometrii algebraicznej) z punktu widzenia teorii homotopii. Uczestnicy finansowanego przez Unię Europejską projektu MbHI opracowują nowe fundamenty teorii homotopii A1, które umożliwią jej rozszerzenie w celu opisania homotopii innej niż homotopia A1.
Cel
The proposed project is aimed at establishing new foundations of motivic homotopy theory, which enhances Voevodsky's motivic homotopy theory. Voevodsky's motivic homotopy theory is based on A1-homotopy theory, and thus it cannot capture non A1-homotopy invariant phenomena in algebraic geometry such as algebraic K-theory (for singular varieties), topological cyclic homology, logarithmic cohomology, deformation theory, (wild) ramification theory, and so on. Our new foundation is based on projective bundle formula instead of A1-homotopy invariance, so that it has a potential to capture aforementioned non A1-homotopy invariant phenomena. To overcome fundamental difficulties to use projective bundle formula as an input of homotopy theory, we use ``derived correspondence'', which is a derived version of framed correspondence. Another key input is the notion of derived blow-ups, which was used by Kerz, Strunk and Tamme to solve Weibel's conjecture. This project consists of the construction of a new motivic homotopy category and its applications. Applications would include a construction of motivic cohomology (for possibly singular varieties) together with a motivic spectral sequence to algebraic K-theory (Beilinson's conjecture), motivic interpretation of topological cyclic homology, and motivic interpretation of logarithmic cohomology.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta algebra geometria algebraiczna
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2019
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
1165 KOBENHAVN
Dania
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.