Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Integration of the Biochemical and Mechanical Networks of Cell Division

Descrizione del progetto

Ricostruire il meccanismo più importante della vita

Una cellula subisce una trasformazione radicale prima di dividersi. La divisione cellulare è uno dei processi fondamentali nella vita. Il progetto BIOMECANET, finanziato dal CER, studierà questo meccanismo che coinvolge la chimica fuori equilibrio di molti componenti e lo ricostruirà, riassemblando il motore della divisione. Nello specifico, l’obiettivo del progetto è svelare questa interazione riprogettandola in vitro e modellandola in silico. Analizzerà l’emergere di complesse funzioni biologiche simili alla vita combinando queste reti ricostituite, integrando il controllo temporale e le forze meccaniche. Ciò eleverà la portata e l’ambito delle ricostituzioni in vitro.

Obiettivo

Cellular and sub-cellular organisation at the micrometre length scale ultimately reflects the activity of molecular networks that harness chemical energy to perform precise mechanical work, create functional spatial gradients, and sustain timely temporal changes in molecular activities. In eukaryotic cell division, the biochemical oscillations of the cell cycle drive dramatic morphological changes of the cytoskeleton necessary for bi-orientation of chromosomes and for their subsequent delivery into two daughter cells. This mechanism is at the heart of biology, but it is poorly understood and hard to address because it involves out-of-equilibrium chemistry of many components and Brownian mechanics of the cytoskeleton. BIOMECANET’s extraordinarily ambitious goal is to unravel this interplay by re-engineering it in vitro and by modelling it in silico. To achieve this, BIOMECANET will mobilize an unrivalled catalogue of purified human proteins to reconstitute four fundamental and interlinked biochemical and mechanical protein networks: 1) the cell cycle oscillator with the spindle assembly checkpoint; 2) the metaphase spindle; 3) the chromosome bi-orientation machinery of kinetochores; and 4) the central spindle and its links with the actin cytoskeleton required for cell fission. Then, BIOMECANET will combine these reconstituted networks, integrating temporal control and mechanical forces to analyse the emergence of complex life-like biological function, thus elevating scale and scope of in vitro reconstitutions to an entirely new level. Crucial to the attainment of BIOMECANET’s long-term goals is the synergetic alliance of two biochemists having pioneered different types of biochemical reconstitutions in the complementary areas of cell cycle and chromosome biology (Musacchio) and the cytoskeleton (Surrey), and a theoretician having pioneered physically faithful modelling and simulation of intracellular systems (Nédélec).

Meccanismo di finanziamento

ERC-SyG - Synergy grant

Istituzione ospitante

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Contribution nette de l'UE
€ 3 100 000,00
Indirizzo
HOFGARTENSTRASSE 8
80539 Munchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 3 100 000,00

Beneficiari (3)