Opis projektu
Odtwarzanie najważniejszego procesu zachodzącego w żywych organizmach
Zanim komórka ulegnie podziałowi, zachodzą w niej poważne przemiany. Podział komórki to jeden z podstawowych procesów leżących u podstaw życia. Zespół finansowanego ze środków ERBN projektu BIOMECANET zbada ten proces, któremu towarzyszy utrata równowagi chemicznej wielu elementów. Następnie odtworzy go, rekonstruując mechanizm podziału. Celem projektu jest przede wszystkim odkrycie tajemnic tego zjawiska poprzez sztuczne odtworzenie go in vitro i utworzenie jego modelu in silico. Łącząc takie zrekonstruowane układy oraz stosując połączenie kontroli czasowej i sił mechanicznych, badacze przeanalizują proces powstawania złożonych funkcji biologicznych imitujących funkcje żywych komórek. Pozwoli to na poprawę skali i zakresu rekonstrukcji in vitro.
Cel
Cellular and sub-cellular organisation at the micrometre length scale ultimately reflects the activity of molecular networks that harness chemical energy to perform precise mechanical work, create functional spatial gradients, and sustain timely temporal changes in molecular activities. In eukaryotic cell division, the biochemical oscillations of the cell cycle drive dramatic morphological changes of the cytoskeleton necessary for bi-orientation of chromosomes and for their subsequent delivery into two daughter cells. This mechanism is at the heart of biology, but it is poorly understood and hard to address because it involves out-of-equilibrium chemistry of many components and Brownian mechanics of the cytoskeleton. BIOMECANET’s extraordinarily ambitious goal is to unravel this interplay by re-engineering it in vitro and by modelling it in silico. To achieve this, BIOMECANET will mobilize an unrivalled catalogue of purified human proteins to reconstitute four fundamental and interlinked biochemical and mechanical protein networks: 1) the cell cycle oscillator with the spindle assembly checkpoint; 2) the metaphase spindle; 3) the chromosome bi-orientation machinery of kinetochores; and 4) the central spindle and its links with the actin cytoskeleton required for cell fission. Then, BIOMECANET will combine these reconstituted networks, integrating temporal control and mechanical forces to analyse the emergence of complex life-like biological function, thus elevating scale and scope of in vitro reconstitutions to an entirely new level. Crucial to the attainment of BIOMECANET’s long-term goals is the synergetic alliance of two biochemists having pioneered different types of biochemical reconstitutions in the complementary areas of cell cycle and chromosome biology (Musacchio) and the cytoskeleton (Surrey), and a theoretician having pioneered physically faithful modelling and simulation of intracellular systems (Nédélec).
Dziedzina nauki
Program(-y)
Temat(-y)
System finansowania
ERC-SyG - Synergy grantInstytucja przyjmująca
80539 Munchen
Niemcy