Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2022-12-23

Rational approximation of analytic functions and its applications to the spectral theory of difference operators, non-linear dynamical systems, special functions, and number theory

Cel

This INTAS project brings together the expert researchers in Western Europe and the school around A. A. Gonchar in the New Independent States. The backbone of the project is the development of the theory of rational approximation of analytic functions, in particular the extension to simultaneous rational approximation to a system of functions. Important tools for rational approximation are Riemann-Hilbert problems, the theory of orthogonal polynomials, logarithmic potential theory, and operator theory for difference operators. Most European experts for these tools are members of the various teams in the project.

One of the main objectives is to work out applications of rational approximation in four areas:
Spectral theory of difference operators. There is a close connection between polynomials satisfying a second order recurrence relation (difference equation), orthogonal polynomials, and denominators of Padé approximation. One of the objectives is to find a similar connection between polynomials satisfying a higher order recurrence relation, multiple orthogonal polynomials, and common denominators of Hermite-Padé approximation. This extension deals with non-symmetric finite order difference equations which have not been considered in the literature but which occur naturally in some situations. We expect to obtain necessary and/or sufficient conditions on the coefficients in the recurrence relations implying multiple orthogonality on the real line, to set up perturbation theory of certain standard recurrence relations (constant coefficients), and to work out the scattering theory for such operators using the asymptotic behaviour of the polynomials and the corresponding Riemann-Hilbert problem.
Non-linear dynamical systems. Certain discrete integrable dynamical systems (Toda lattice, Langmuir lattice) can be solved using tridiagonal operators. Our objective is to study discrete dynamical systems corresponding to banded Hessenberg operators, appearing in the spectral theory of multiple orthogonal polynomials. We expect to find transformations between discrete dynamical systems of higher order, an explicit method for obtaining the solution of these dynamical systems, and we hope to find useful results for the continuous dynamical systems obtained as continuum limits of the discrete systems (as in the continuum limit of the Toda lattice).
Special functions. The multiple orthogonal polynomials arising from Hermite-Padé approximation for very specific systems of functions can be expressed in terms of special functions with various important structure properties. These special functions extend the classical orthogonal polynomials. The objective is to make a full characterisation of the classical multiple orthogonal polynomials, with the relevant properties involving the differential operators, the difference operator, and the q-difference operator, and to investigate their asymptotic behaviour using the Riemann-Hilbert approach. We expect to work out explicit formulas for all these classical polynomials and to list all the relevant quantities characterising these special functions.
Number theory. Historically Hermite-Padé approximation was introduced in the nineteenth century to prove the transcendence of the remarkable constant e (the basis of the natural logarithm). Our objective is to use Hermite-Padé approximation to prove properties of other remarkable constants and we hope to be able to prove irrationality and transcendence of certain constants that are not yet known to be irrational, such as Catalan's constant and Euler's constant. We expect to find explicit rational numbers, expressed in terms of the special function found higher, approximating these constants.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

Brak dostępnych danych

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

Brak dostępnych danych

Koordynator

Katholieke Universiteit Leuven
Wkład UE
Brak danych
Adres
200 D Celstijnenlaan
3001 Leuven
Belgia

Zobacz na mapie

Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Uczestnicy (10)

Moja broszura 0 0