Holonomia i foliacje singularne
Rozmaitość podzielona na podrozmaitości nazywana jest rozmaitością z foliacją. Foliacje występują przy rozwiązywaniu równań różniczkowych w różnych dziedzinach matematyki, w tym w fizyce matematycznej czy teorii sterowania, dotyczącej zachowania się układów dynamicznych. Choć "regularne" foliacje są dokładnie zbadane, to większość foliacji ma charakter patologiczny. Te foliacje singularne, występujące w rozmaitościach jako podmoduł ściśle upakowanych pól wektorowych, były przedmiotem badań prowadzonych w ramach projektu NCGSF (Noncommutative geometry for singular foliations). Uczeni sformułowali hipotezę Bauma-Connesa dla dowolnej foliacji singularnej. Zgodnie z tym hipotetycznym uogólnieniem twierdzenia Atiyaha-Singera czysto typologiczne obiekty koincydują z obiektami czysto analitycznymi. Jego udowodnienie było możliwie dzięki skonstruowaniu tzw. patologicznego grupoidu holonomicznego. Grupoid holonomiczny to struktura matematyczna śledząca symetrie foliacji. Był to najważniejszy element części analitycznej twierdzenia Bauma-Connesa. Dokładniej mówiąc, uczeni wprowadzili pojęcie transformacji holonomicznej, odpowiednika dyfeomorfizmu. Do stworzenia części geometrycznej naukowcy wykorzystali model LeGalla-Tu. Najpierw jednak trzeba było zdefiniować warunki gwarantujące wzdłużną gładkość grupoidu holonomicznego. Dopiero wówczas możliwe było sformułowanie modelu normalnej formy regularnej rozmaitości z foliacją wokół kompaktowego "liścia". Metodologia zastosowana w projekcie NCGSF została opisana w szeregu publikacji na łamach międzynarodowych czasopism naukowych. Wykorzystuje ona zdobycze wcześniejszych badań prowadzonych przez tych samych naukowców, którzy udoskonalili ją, tworząc grupoid holonomiczny dowolnej foliacji singularnej.