Descrizione del progetto
Uno studio approfondisce le strutture di positività negli spazi di Teichmüller più elevati
I gruppi di Lie, che descrivono le simmetrie di uno spazio o sistema, sono ampiamente usati in numerosi ambiti della matematica e della fisica moderne. La positività totale è una struttura importante nei gruppi di Lie e ha numerose applicazioni nella matematica del discreto, nei processi stocastici e nella teoria della rappresentazione. Recentemente sono state scoperte nuove strutture di positività che generalizzano la positività totale nei gruppi di Lie. Il progetto PosLieRep, finanziato dall’UE, intende studiare queste nuove strutture allo scopo di acquisire nuove informazioni sulla teoria degli spazi di Teichmüller più elevati.
Obiettivo
Lie groups lie at the heart of mathematics. They play an important role in geometry, analysis, number theory, algebraic geometry and representation theory. As they describe symmetries of a space or a system they also appear prominently in theoretical physics. Not every system realizes the full amount of symmetry, it is therefore of key importance to investigate not only Lie groups, but also their subgroups, and in particular their discrete subgroups, which are often linked to geometric or arithmetic structures.
This projects builds upon new developments in the theory of Lie groups, in particular the intro- duction of total positivity in split real Lie groups on the one hand and new exiciting phenomena in the study of discrete subgroups, in particular the emergence of higher Teichmüller spaces.
Higher Teichmüller spaces generalize the classical theory of Fricke-Teichmüller space in the context of simple Lie groups of higher rank. The existence of higher Teichmu ̈ller spaces came as a surprise, and their discovery and investigation led to various other interesting developments, including an exciting interplay with the theory of Higgs bundles as well as with supersymmetric field theories in theoretical physics.
In this proposal we develop a unifying framework for higher Teichmüller spaces, which comprises the two known families, Hitchin components and maximal representations, but conjecturally also two new families. The basis for this conjectural unified theory lies in a new notion of positivity in Lie groups, which generalizes Lusztig’s total positivity in the context of arbitrary real Lie groups that are not necessarily split. This generalization of total positivity is of interest in its own right and leads to many exciting questions and conjectures that will be addressed in this proposal. The three main themes of the proposed project are Positivity in Lie groups, Positive representations as higher Teichmüller spaces, and Symplectic geometry of representati
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2020-ADG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
ERC-ADG -Istituzione ospitante
80539 Munchen
Germania