Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Correspondences in enumerative geometry: Hilbert schemes, K3 surfaces and modular forms

Obiettivo

Enumerative geometry is concerned with counting geometric objects on spaces defined by polynomial equations. The subject, which has roots going back to the ancient Greeks, was revolutionized by string theory in the 90s and has since become a fundamental link between algebraic geometry, representation theory, number theory and physics. With K3Mod I propose to establish a wide range of new correspondences in enumerative geometry. These link together different enumerative theories and open new perspectives to attack long-standing problems concerning the quantum cohomology of the Hilbert scheme of points on surfaces, modular properties of invariants of K3 surfaces, string partition functions of Calabi-Yau threefolds with links to Conway Moonshine, and a major case of the Crepant Resolution Conjecture.

The geometry of the Hilbert scheme of points on a surface will play a central role. I aim to prove a correspondence between its Gromov-Witten theory, and the Donaldson-Thomas theory of certain threefold families. Correspondences for moduli spaces of Higgs bundles and the orbifold theory of the symmetric product of surfaces will be considered as well. This provides methods to prove that Gromov-Witten invariants of Hilbert schemes of points on K3 surfaces are Fourier coefficients of quasi-Jacobi forms, possibly leading to a complete solution of their enumerative geometry. After elliptic curves, K3 surfaces form the simplest Calabi-Yau geometry for which a complete understanding of the Gromov-Witten theory is in reach. For elliptic threefolds, I will study the relationship of their Donaldson-Thomas invariants with quasi-Jacobi forms, using both degeneration techniques and wallcrossing formulae.

The research goals of this proposal will lead to exciting new connections between geometry, modular forms, and representation theory. The results will provide a clear understanding of the interplay between Hilbert schemes, K3 surfaces, and modularity in enumerative geometry.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2021-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 296 705,00
Indirizzo
SEMINARSTRASSE 2
69117 Heidelberg
Germania

Mostra sulla mappa

Regione
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 296 705,50

Beneficiari (1)

Il mio fascicolo 0 0