Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Overcoming the curse of dimensionality through nonlinear stochastic algorithms

Projektbeschreibung

Nichtlineare Monte-Carlo-Methoden für hochdimensionale Approximationsprobleme

In vielen relevanten realen Problemen ist es fundamental wichtig, Bewertungen von hochdimensionalen Funktionen näherungsweise zu berechnen. Deterministische Standard-Approximationsverfahren leiden in diesem Zusammenhang häufig unter dem sogenannten Fluch der Dimensionalität in dem Sinne, dass die Anzahl der Rechenoperationen des Approximationsverfahrens mindestens exponentiell mit der Problemdimension wächst. Das Hauptziel des ERC-finanzierten Projekts MONTECARLO ist es, mehrstufige Monte-Carlo-Methoden und Methoden des stochastischen Gradientenabstiegs einzusetzen, um Algorithmen zu entwerfen und zu analysieren, die den Fluch der Dimensionalität bei der numerischen Approximation verschiedener hochdimensionaler Funktionen nachweislich besiegen. Dazu zählen Lösungen für bestimmte stochastische optimale Kontrollprobleme einiger nichtlinearer partieller Differentialgleichungen sowie für bestimmte überwachte Lernprobleme.

Ziel

In a series of relevant real world problems it is of fundamental importance to approximatively compute evaluations of high-dimensional functions. Such high-dimensional approximation problems appear, e.g. in stochastic optimal control problems in operations research, e.g. in supervised learning problems, e.g. in financial engineering where partial differential equations (PDEs) and forward backward stochastic differential equations (FBSDEs) are used to approximatively price financial products, and, e.g. in nonlinear filtering problems where stochastic PDEs are used to approximatively describe the state of a given physical system with only partial information available. Standard approximation methods for such approximation problems suffer from the socalled curse of dimensionality in the sense that the number of computational operations of the approximation method grows at least exponentially in the problem dimension. It is the key objective of this project to design and analyze approximation algorithms which provably overcome the curse of dimensionality in the case of stochastic optimal control problem, nonlinear PDEs, nonlinear FBSDEs, certain SPDEs, and certain supervised learning problems. We intend to solve many of the above named approximation problems by combining different types of multilevel Monte Carlo approximation methods, in particular, multilevel Picard approximation methods, with stochastic gradient descent (SGD) optimization methods. Another chief objective of this project is to prove the conjecture that the SGD optimization method converges in the training of ANNs with ReLU activation. We expect that the outcome of this project will have a significant impact on the way how highdimensional PDEs, FBSDEs, and stochastic optimal control problems are solved in engineering and operations research and on the mathematical understanding of the training of ANNs by means of the SGD optimization methods.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2021-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITAET MUENSTER
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 351 528,00
Adresse
SCHLOSSPLATZ 2
48149 Muenster
Deutschland

Auf der Karte ansehen

Region
Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 351 528,00

Begünstigte (1)

Mein Booklet 0 0