Opis projektu
Nieliniowe metody typu Monte Carlo dla wysokowymiarowych problemów aproksymacyjnych
W wielu rzeczywistych problemach fundamentalne znaczenie ma przybliżone obliczanie wartości funkcji wysokowymiarowych. Standardowe deterministyczne metody aproksymacji często cierpią w tym kontekście z powodu tzw. przekleństwa wymiarowości w tym sensie, że liczba operacji obliczeniowych metody aproksymacji rośnie co najmniej wykładniczo w wymiarze problemu. Kluczowym celem finansowanego przez ERBN projektu MONTECARLO jest wykorzystanie wielopoziomowej metody Monte Carlo i metody stochastycznego zejścia gradientowego do zaprojektowania i przeanalizowania algorytmów, które w udowodniony sposób przezwyciężają przekleństwo wymiarowości w numerycznej aproksymacji kilku wysokowymiarowych funkcji. Obejmują one rozwiązania niektórych stochastycznych problemów optymalnego sterowania pewnymi nieliniowymi równaniami różniczkowymi cząstkowymi oraz niektórych nadzorowanych problemów uczenia się.
Cel
In a series of relevant real world problems it is of fundamental importance to approximatively compute evaluations of high-dimensional functions. Such high-dimensional approximation problems appear, e.g. in stochastic optimal control problems in operations research, e.g. in supervised learning problems, e.g. in financial engineering where partial differential equations (PDEs) and forward backward stochastic differential equations (FBSDEs) are used to approximatively price financial products, and, e.g. in nonlinear filtering problems where stochastic PDEs are used to approximatively describe the state of a given physical system with only partial information available. Standard approximation methods for such approximation problems suffer from the socalled curse of dimensionality in the sense that the number of computational operations of the approximation method grows at least exponentially in the problem dimension. It is the key objective of this project to design and analyze approximation algorithms which provably overcome the curse of dimensionality in the case of stochastic optimal control problem, nonlinear PDEs, nonlinear FBSDEs, certain SPDEs, and certain supervised learning problems. We intend to solve many of the above named approximation problems by combining different types of multilevel Monte Carlo approximation methods, in particular, multilevel Picard approximation methods, with stochastic gradient descent (SGD) optimization methods. Another chief objective of this project is to prove the conjecture that the SGD optimization method converges in the training of ANNs with ReLU activation. We expect that the outcome of this project will have a significant impact on the way how highdimensional PDEs, FBSDEs, and stochastic optimal control problems are solved in engineering and operations research and on the mathematical understanding of the training of ANNs by means of the SGD optimization methods.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.
- nauki przyrodnicze informatyka sztuczna inteligencja uczenie maszynowe uczenie nadzorowane
- nauki przyrodnicze matematyka matematyka stosowana statystyka i rachunek prawdopodobieństwa
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna równania różniczkowe równania różniczkowe cząstkowe
- nauki przyrodnicze matematyka matematyka stosowana analiza numeryczna
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
- information-based complexity
- IBC
- computational stochastics
- Monte Carlo method
- multilevel Monte Carlo method
- numerical analysis
- partial differential equation
- PDE
- backward stochastic differential equation
- BSDE
- stochastic optimal control
- stochastic partial differential equation
- SPDE
- stochastic gradient descent
- SGD
- machine learning
- artificial neural network
- ANN
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2021-COG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
48149 Muenster
Niemcy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.