Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Overcoming the curse of dimensionality through nonlinear stochastic algorithms

Opis projektu

Nieliniowe metody typu Monte Carlo dla wysokowymiarowych problemów aproksymacyjnych

W wielu rzeczywistych problemach fundamentalne znaczenie ma przybliżone obliczanie wartości funkcji wysokowymiarowych. Standardowe deterministyczne metody aproksymacji często cierpią w tym kontekście z powodu tzw. przekleństwa wymiarowości w tym sensie, że liczba operacji obliczeniowych metody aproksymacji rośnie co najmniej wykładniczo w wymiarze problemu. Kluczowym celem finansowanego przez ERBN projektu MONTECARLO jest wykorzystanie wielopoziomowej metody Monte Carlo i metody stochastycznego zejścia gradientowego do zaprojektowania i przeanalizowania algorytmów, które w udowodniony sposób przezwyciężają przekleństwo wymiarowości w numerycznej aproksymacji kilku wysokowymiarowych funkcji. Obejmują one rozwiązania niektórych stochastycznych problemów optymalnego sterowania pewnymi nieliniowymi równaniami różniczkowymi cząstkowymi oraz niektórych nadzorowanych problemów uczenia się.

Cel

In a series of relevant real world problems it is of fundamental importance to approximatively compute evaluations of high-dimensional functions. Such high-dimensional approximation problems appear, e.g. in stochastic optimal control problems in operations research, e.g. in supervised learning problems, e.g. in financial engineering where partial differential equations (PDEs) and forward backward stochastic differential equations (FBSDEs) are used to approximatively price financial products, and, e.g. in nonlinear filtering problems where stochastic PDEs are used to approximatively describe the state of a given physical system with only partial information available. Standard approximation methods for such approximation problems suffer from the socalled curse of dimensionality in the sense that the number of computational operations of the approximation method grows at least exponentially in the problem dimension. It is the key objective of this project to design and analyze approximation algorithms which provably overcome the curse of dimensionality in the case of stochastic optimal control problem, nonlinear PDEs, nonlinear FBSDEs, certain SPDEs, and certain supervised learning problems. We intend to solve many of the above named approximation problems by combining different types of multilevel Monte Carlo approximation methods, in particular, multilevel Picard approximation methods, with stochastic gradient descent (SGD) optimization methods. Another chief objective of this project is to prove the conjecture that the SGD optimization method converges in the training of ANNs with ReLU activation. We expect that the outcome of this project will have a significant impact on the way how highdimensional PDEs, FBSDEs, and stochastic optimal control problems are solved in engineering and operations research and on the mathematical understanding of the training of ANNs by means of the SGD optimization methods.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2021-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITAET MUENSTER
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 351 528,00
Adres
SCHLOSSPLATZ 2
48149 Muenster
Niemcy

Zobacz na mapie

Region
Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 351 528,00

Beneficjenci (1)

Moja broszura 0 0