Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Multimodal multitAsk learninG for MultIsCale BATHYmetric mapping in shallow waters

Opis projektu

Usprawnienie procesu mapowania wybrzeża za pomocą głębokiego uczenia maszynowego

Mapy dużej części dna oceanu praktycznie nie istnieją, a wielu płytkich obszarów przybrzeżnych, na które w największym stopniu wpływają zmiany klimatyczne i antropogeniczne, nie są najaktualniejsze. Celem finansowanego ze środków UE projektu MagicBathy jest poprawa tego stanu rzeczy dzięki nowemu algorytmowi głębokiego uczenia maszynowego, który może lepiej wykorzystać zdjęcia satelitarne oraz zdjęcia z bezzałogowych statków powietrznych (ang. unmanned aerial vehicle, UAV). Obecnie właściwości optyczne wody mogą negatywnie wpływać na jakość zdjęć z UAV, a ich korygowanie jest kosztowne, natomiast zdjęcia satelitarne mogą cechować się niską rozdzielczością. Zespół projektu MagicBathy wykorzysta technologię uczenia maszynowego do poprawy rozdzielczości przestrzennej zdjęć satelitarnych i powstałych z nich map batymetrycznych. Naukowcy opracują także specjalny algorytm do poprawy rozdzielczości zdjęć płytkich wód.

Cel

Accurate, detailed and high-frequent bathymetry, coupled with the important visual and semantic information, is crucial for the undermapped shallow coastal areas being affected by intense climatological and anthropogenic pressures. Regular UAV and satellite imagery have the potential to frequently and consistently map those areas to different extents and detail, providing ground breaking key information. However, optical properties of water severely affect images and refraction is the main factor affecting their geometry. Current Structure from Motion (SfM) based solutions for refraction correction are slow and costly. Satellite Derived Bathymetry (SDB) methods deliver faster results over huge shallow areas albeit in lower spatial resolution, failing to handle non-homogeneous seabeds. Recent methods based on Convolutional Neural Networks (CNNs) deliver either only the bathymetry or the semantics of the scene, tackling those problems separately and in one scale/modality at a time. They are mostly dedicated to satellite images, failing to address the challenges of shallow waters, being also inefficient for UAV images, preventing higher resolution results. MagicBathy will establish an advanced deep learning framework for low-cost shallow water mapping by developing a novel boundary-aware multitask, multiscale and multimodal learning approach for bathymetry and semantics together, exploiting single either UAV or satellite imagery. To overcome the domain gap, generalize and improve performance, self-supervised in-domain representation learning will be performed. To enhance the spatial resolution of low resolution satellite images and hence of the resulting bathymetric/semantic maps, a conditional generative adversarial network (cGAN)-based Super Resolution framework will be developed, dealing with the special challenges of shallow water imagery. Frameworks, models and results will be published in open access, enabling the rapid progress in shallow water mapping worldwide

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2021-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

TECHNISCHE UNIVERSITAT BERLIN
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 189 687,36
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Partnerzy (1)

Moja broszura 0 0