Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Incrementally learning new classes with generative classification

Cel

"Learning continually from non-stationary streams of data is a key feature of natural intelligence, but an unsolved problem in deep learning. Particularly challenging for deep neural networks is the problem of ""class-incremental learning"", whereby a network must learn to distinguish classes that are not observed together. In deep learning, the default approach to classification is learning discriminative classifiers. This works great in the i.i.d. setting when all classes are available simultaneously, but when new classes must be learned incrementally, successful training of discriminative classifiers depends on workarounds such as storing data or generative replay. In a radical shift of gears, here I propose to instead address class-incremental learning with generative classification. Key advantage is that generative classifiers – unlike discriminative classifiers – do not compare classes during training, but only during inference (i.e. when making a classification decision). As a proof-of-concept, in preliminary work I showed that a naïve implementation of a generative classifier, with a separate variational autoencoder model per class and likelihood estimation through importance sampling, outperforms comparable generative replay methods. To improve the efficiency, scalability, and performance of this generative classifier, I propose four further modifications: (1) move the generative modelling objective from the raw inputs to an intermediate network layer; (2) share the encoder network between classes, but not necessarily the decoder networks; (3) use fewer importance samples for unlikely classes; and (4) make classification decisions hierarchical. This way, during my MSCA fellowship hosted in the group of Prof Tinne Tuytelaars, I hope to develop generative classification into a practical, efficient, and scalable state-of-the-art deep learning method for class-incremental learning."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2021-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

KATHOLIEKE UNIVERSITEIT LEUVEN
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 191 760,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0