Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Robust Learning and Reasoning for Complex Event Forecasting

Opis projektu

Udoskonalanie sztucznej inteligencji na potrzeby prognozowania złożonych zdarzeń

Wiele zastosowań wykorzystuje sztuczną inteligencję, aby uporać się z nieustannie zmieniającymi się przepływami informacji. W ramach finansowanego ze środków UE projektu EVENFLOW opracowane zostaną hybrydowe techniki uczenia się do prognozowania złożonych zdarzeń o zmiennej naturze. Zespół projektu wykorzysta zarówno techniki uczenia się oparte na reprezentacji neuronalnej, które są zdolne do konstruowania cech opartych na zdarzeniach ze strumieni danych na poziomie percepcji, jak i narzędzia symbolicznego uczenia się i rozumowania. Internetowy charakter tych metod uczenia się pozwoli naukowcom wykorzystać bogatą wiedzę, która staje się dostępna stopniowo, w miarę upływu czasu. Rozwiązanie EVENFLOW zostanie przetestowane przy użyciu trzech przypadków: prognozowania onkologicznego w medycynie precyzyjnej, bezpiecznego i efektywnego działania autonomicznych robotów transportowych w inteligentnych fabrykach oraz wiarygodnej oceny cyklu życia infrastruktury krytycznej.

Cel

A growing number of applications rely on AI-based solutions to carry-out mission-critical tasks, many of which are of temporal nature, dealing with ever-evolving flows of information. Crucial for mitigating threats and taking advantage of opportunities in such domains, is the ability to forecast imminent situations and critical complex events ahead of time. EVENFLOW will develop hybrid learning techniques for complex event forecasting, which combine deep learning with logic-based learning and reasoning into neuro-symbolic forecasting models. The envisioned methods will combine (i) neural representation learning techniques, capable of constructing event-based features from streams of perception-level data with (ii) powerful symbolic learning and reasoning tools, that utilize such features to synthesize high-level, interpretable patterns of critical situations to be forecast. Crucial in the EVENFLOW approach is the online nature of the learning methods, which makes them applicable to evolving data flows and allows to utilize rich domain knowledge that is becoming available progressively, over time. To deal with the brittleness of neural predictors and the high volume/velocity of temporal data flows, the EVENFLOW techniques will rely on novel, formal verification techniques for machine learning, in addition to a suite of scalability algorithms for federated training and incremental model construction. The learnt forecasters will be interpretable and scalable, allowing for fully explainable insights, delivered in a timely fashion and enabling proactive decision making. EVENFLOW will be evaluated on three challenging use cases related to oncological forecasting in precision medicine, safe and efficient behavior of autonomous transportation robots in smart factories and reliable life cycle assessment of critical infrastructure.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-RIA - HORIZON Research and Innovation Actions

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-CL4-2021-HUMAN-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

NETCOMPANY SA
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 185 000,00
Adres
PLACE DU CHAMP DE MARS 5/10
1050 BRUXELLES
Belgia

Zobacz na mapie

Region
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Rodzaj działalności
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 715 000,00

Uczestnicy (6)

Partnerzy (1)

Moja broszura 0 0