Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Revolutionizing AI in drug discovery via innovative molecular representation paradigms

Opis projektu

Przekształcanie informacji chemicznych pozyskiwanych przez sztuczną inteligencję

SI doprowadziła już do kilku przełomowych odkryć w nauce. Jednak w przypadku odkrywania leków zmiany wprowadzane przez SI mają charakter bardziej ewolucyjny niż rewolucyjny. Rosnące zaawansowanie algorytmów nie przekłada się na skokowe odkrycia, co oznacza konieczność zrewolucjonizowania SI w dziedzinie odkrywania leków. W tym kontekście finansowany przez ERBN projekt ReMINDER pozwoli na gruntowne zrewidowanie reprezentacji molekularnych, na których bazują algorytmy uczenia głębokiego. Reprezentacje te nie zmieniły się znacząco w ostatnich dekadach i ograniczają ilość oraz jakość informacji chemicznych, których może uczyć się SI. Aby opracować skuteczniejsze modele i rozwiązać problemy naukowe, w ramach projektu powstanie nowy „język molekularny”, rejestrujący bardziej wyrafinowane informacje chemiczne dopasowane do wymagań SI. Projekt ReMINDER będzie ważnym motorem zmian w dziedzinie molekularnej SI.

Cel

Artificial intelligence (AI) in the form of deep learning is driving unprecedented progress in numerous fields, e.g. for protein structure prediction and organic reaction planning. In drug discovery and chemical biology, such progress is an “evolution” rather than a revolution: several tasks still await to be solved by AI, e.g. accurate structure-activity and activity-cliff prediction, and design of structurally innovative chemical matter. Increasingly complex deep learning approaches are leading to progressively smaller gains in model capabilities, calling for a revolution in AI for drug discovery. The springboard for this project is a striking observation: while novel deep learning algorithms are in continuous development, the input ‘raw’ molecular representations they rely on (e.g. SMILES strings and molecular graphs) have not considerably changed in the last four decades – limiting the amount and quality of chemical information learnable by AI. The potential of capturing more sophisticated chemical information better into a new ‘molecular language’ is still untapped and bears promise to revolutionize molecular AI. ReMINDER will break with traditional approaches and shift the object of study from increasingly complex algorithms to novel molecular representation paradigms for AI. ReMINDER will be an agent of change in the molecular AI landscape, by developing a new representation framework at the interface between method development and experimental validation. ReMINDER will disrupt the potential of AI to (a) navigate complex structure-activity landscapes, (b) design innovative bioactive molecules from scratch, (c) leverage binding pocket information for molecule discovery. By transforming the chemical information captured for AI, we open opportunities to develop more efficient models and solve open scientific challenges. ReMINDER will create the basis for exciting new technology in the field of deep learning for drug discovery, and chemistry at large.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2022-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

TECHNISCHE UNIVERSITEIT EINDHOVEN
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 494 006,00
Adres
GROENE LOPER 3
5612 AE Eindhoven
Niderlandy

Zobacz na mapie

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 494 006,25

Beneficjenci (1)

Moja broszura 0 0