Projektbeschreibung
Studie untersucht Probleme der geometrischen Maßtheorie
Das vom Europäischen Forschungsrat finanzierte Projekt MUSING verfolgt Fortschritte bei mehreren bekannten Problemen der geometrischen Maßtheorie . Dazu gehören die Vitushkinsche Annahme zu entfernbaren Mengen aus den 60er Jahren und die von Tom Wolff in den 90er Jahren vorgeschlagene Annahme zu Fürstenbergs Mengen. Beide Problemstellungen stehen im Zusammenhang mit der Präzisierung und Verallgemeinerung einiger grundlegender Ergebnisse der geometrischen Maßtheorie, wie z. B. der Projektionstheoreme von Besicovitch und Marstrand. MUSING wird Methoden aus der Multiskalenanalyse und Ahlfors-Regelmengen nutzen. Letztere sind in unterschiedlichen Maßstäben und an verschiedenen Orten einheitlich und eignen sich daher für Multiskalenmethoden.
Ziel
The ERC CoG project MUSING aims to make progress in several old problems in geometric measure theory (GMT), including Vitushkin's conjecture from the 60s, and the Furstenberg set conjecture proposed by Wolff in the 90s. Both problems are related to sharpening and generalising some cornerstone results in GMT, such as the projection theorems of Besicovitch and Marstrand. Recent work on these questions combines techniques from GMT, additive combinatorics, harmonic analysis, and incidence geometry. Vitushkin's conjecture is motivated by the Painlev problem on finding a geometric characterisation for the removable singularities of bounded analytic functions. The Furstenberg conjecture has direct links to other key open problems in continuum incidence geometry, such as Falconer's distance set problem, and the Erds-Szemerdi sum-product problem. MUSING will tackle its problems with techniques from multi-scale analysis, and via the special case of Ahlfors-regular sets. These sets are uniform at different scales and locations, so they are particularly amenable to multi-scale methods. On the other hand, progress in the Ahlfors-regular special cases can often be extended to more general sets via mechanisms such as the corona decompositions of David and Semmes, and the scale block decomposition technique, devised by Keleti and Shmerkin in their work on Falconer's distance set problem. Apart from being a stepping stone on the way to general sets, Ahlfors-regular sets also have great independent interest. Evidence is accumulating that incidence geometric problems may admit far stronger solutions for Ahlfors-regular sets than for general sets. Conclusive results of this type already exist for classes of dynamically generated sets, notably self-similar sets, due to the works of Hochman, Shmerkin, Wu, and others. To what extent can these results be extended to Ahlfors-regular sets, which share the spatial uniformity of self-similar sets, but lack an underlying dynamical system?
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2022-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
40100 Jyvaskyla
Finnland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.