Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Multi-scale incidence geometry

Opis projektu

Badanie problemów teorii miary geometrycznej

Celem finansowanego przez ERBN projektu MUSING jest osiągnięcie postępu w zakresie kilku dobrze znanych problemów teorii miary geometrycznej (ang. geometric measure theory, GMT), w tym w przypuszczeniu Wituszkina dotyczącego zbiorów usuwalnych z lat 60. ubiegłego wieku i przypuszczeniu zbioru Furstenberga zaproponowanym przez Toma Wolffa w latach 90. Oba problemy związane są z wyostrzaniem i uogólnianiem niektórych podstawowych wyników w ramach GMT, takich jak twierdzenie Biezikowicza i Marstranda o rzutowaniu. Zespół projektu MUSING wykorzysta techniki analizy wieloskalowej i zbiorów nieregularnych Ahlforsa. Są one jednolite w różnych skalach i lokalizacjach, a zatem nadają się do zastosowania w metodach wieloskalowych.

Cel

The ERC CoG project MUSING aims to make progress in several old problems in geometric measure theory (GMT), including Vitushkin's conjecture from the 60s, and the Furstenberg set conjecture proposed by Wolff in the 90s. Both problems are related to sharpening and generalising some cornerstone results in GMT, such as the projection theorems of Besicovitch and Marstrand. Recent work on these questions combines techniques from GMT, additive combinatorics, harmonic analysis, and incidence geometry. Vitushkin's conjecture is motivated by the Painlev problem on finding a geometric characterisation for the removable singularities of bounded analytic functions. The Furstenberg conjecture has direct links to other key open problems in continuum incidence geometry, such as Falconer's distance set problem, and the Erds-Szemerdi sum-product problem. MUSING will tackle its problems with techniques from multi-scale analysis, and via the special case of Ahlfors-regular sets. These sets are uniform at different scales and locations, so they are particularly amenable to multi-scale methods. On the other hand, progress in the Ahlfors-regular special cases can often be extended to more general sets via mechanisms such as the corona decompositions of David and Semmes, and the scale block decomposition technique, devised by Keleti and Shmerkin in their work on Falconer's distance set problem. Apart from being a stepping stone on the way to general sets, Ahlfors-regular sets also have great independent interest. Evidence is accumulating that incidence geometric problems may admit far stronger solutions for Ahlfors-regular sets than for general sets. Conclusive results of this type already exist for classes of dynamically generated sets, notably self-similar sets, due to the works of Hochman, Shmerkin, Wu, and others. To what extent can these results be extended to Ahlfors-regular sets, which share the spatial uniformity of self-similar sets, but lack an underlying dynamical system?

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Instytucja przyjmująca

JYVASKYLAN YLIOPISTO
Wkład UE netto
€ 1 362 842,50
Koszt całkowity
€ 1 362 842,50

Beneficjenci (1)