Opis projektu
Nienadzorowane statystyczne uczenie relacyjne na potrzeby uczenia maszynowego
Uczenie maszynowe stało się popularne między innymi ze względu na sukces takich systemów jak AlphaGo firmy DeepMind, GPT-3 firmy OpenAI i Alexa firmy Amazon. Obecne metody uczenia reprezentacyjnego mogą być jednak bardziej efektywne pod względem wykorzystania danych i energii. Ludzie potrafią uczyć się w oparciu o ograniczoną ilość danych za sprawą swojej zdolności do wnioskowania, której nie mają obecnie stosowane strategie uczenia reprezentacyjnego. Projekt DISCWORLD, realizowany przy wsparciu programu działań „Maria Skłodowska-Curie”, zakłada połączenie nienadzorowanego uczenia maszynowego z systemami SI opartymi na logice. Celem jest opracowanie algorytmów, które będą w stanie odkrywać symboliczne reprezentacje w zaszumionych lub niejednoznacznych danych i dostosowywać zdobytą wiedzę w miarę upływu czasu. Rozwiązania te pozwolą na lepsze rozumienie obrazów w trakcie jazdy autonomicznej, uzyskanie wglądu w myślenie przyczynowo-skutkowe i poznanie symbolicznych abstrakcji w różnych dziedzinach matematyki.
Cel
Machine learning is popular nowadays, thanks to the impressive results achieved by systems like DeepMind’s AlphaGo, OpenAI’s language prediction model GPT-3 or Amazon’s speech recognition system Alexa. At the basis of these successes, there is representation learning, which enables training deep neural networks in an unsupervised fashion and provides the starting conditions for subsequent task-specific training. However, current representation learning strategies use large neural networks and consume large amount of data, thus being data and energy inefficient. In contrast, humans learn from limited data in a very efficient way. This is due to the fact that humans are able to perform reasoning, while representation learning strategies lack such capability. This research project aims to overcome these limitations by providing the mathematical foundations for the integration between unsupervised learning and reasoning AI systems based on logic. Specifically, the aim is to devise algorithms enabling the discovery of symbolic representations from noisy/ambiguous data together with their relations and being able to adapt the acquired relational knowledge over time. The resulting solutions will be applied to improve image understanding in autonomous driving and to gain insights about causal reasoning and learning symbolic abstractions in mathematical domains.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2023-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
3000 LEUVEN
Belgia
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.