Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Sustainable Training of Code Language Models through Data Refinement

Opis projektu

Rozwiązanie umożliwiające ekologiczne szkolenie modeli językowych

Duże modele językowe stanowią rewolucyjne rozwiązanie w dziedzinie inżynierii oprogramowania, jednak związane z nimi zużycie energii staje się palącym problemem. Modele trenowane na ogromnych zbiorach danych pobieranych z platform takich jak GitHub stanowią nieocenioną pomoc, jednak ich wpływ na środowisko jest przy tym znaczący. Już sama ilość wymaganych danych przekłada się na wysokie emisje CO2, co stanowi wyzwanie dla zrównoważonego rozwoju tych modeli. Zespół finansowanego ze środków działania „Maria Skłodowska-Curie” projektu condenSE proponuje podejście pozwalające na ograniczenie ilości danych wykorzystywanych do trenowania modeli językowych. Rozwiązanie to ma na celu zmniejszenie zużycia energii bez obniżenia skuteczności samych modeli. To innowacyjne podejście jest zgodne z celami Europejskiego Zielonego Ładu i Celami Zrównoważonego Rozwoju ONZ. Rozwiązanie opracowane przez uczestników projektu jest ważnym krokiem w kierunku bardziej ekologicznej przyszłości technologii.

Cel

"Large language models (LLMs) have gained widespread attention and user adoption. These models, when trained on source code from platforms like GitHub, acquire a deep understanding of both the semantic and syntactic structures of code (i.e. code language models or CLMs). This understanding has paved the way for significant advancements in software engineering, offering developers valuable assistance in labor-intensive tasks like bug fixing and code writing. While CLMs offer tremendous assistance in software engineering tasks, their massive data requirements result in substantial energy consumption and CO2 emissions.

This proposal challenges the conventional wisdom that ""more data is better"" and instead advocates for a refined approach to data in the training of CLMs. We propose that by intentionally decreasing training data volume while simultaneously enhancing data quality through data refinement techniques, we can reduce energy consumption while maintaining or even improving performance on software engineering tasks. The condenSE project represents a pioneering effort to advance sustainable training practices for CLMs. Unlike existing methods, which are often non-systematic or limited to natural languages, condenSE promises a comprehensive approach to achieve sustainability via data refinement for CLMs.

This initiative is well-aligned with the EU Green Deal initiative and UN Sustainable Development Goals, and the increasing attention for LLMs and CLMs means that now is the right time to address their sustainability. The proposal's potential for success is further strengthened by the host institution's international standing, providing a wide range of collaborative opportunities, as well as by the complementary expertise of the applicant and supervisor, spanning the fields of software engineering, machine learning, dataset creation, and language model application."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2023-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

SIMULA RESEARCH LABORATORY AS
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 210 911,04
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0