Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

new eXplainable models that allow the user to Interact with them to benefit Digital Heritage Image Restoration

Opis projektu

Innowacyjne modele wspierają odtwarzanie starych zdjęć i filmów

Dziedzictwo cyfrowe obejmuje między innymi istotne dla kultury materiały komputerowe, w tym zdjęcia i filmy, które wymagają zachowania dla przyszłych pokoleń. Techniki cyfrowego odtwarzania zdjęć, obejmujące koloryzację i usuwanie artefaktów, mogą znacznie poprawić jakość tych materiałów. Zespół finansowanego ze środków działania „Maria Skłodowska-Curie” projektu XIDHIR koncentruje się na dwóch wyzwaniach związanych z odtwarzaniem dziedzictwa cyfrowego - koloryzacją i poprawą jakości starych fotografii i filmów. Wykorzystując algorytmy uczenia głębokiego, badacze chcą zwiększyć objaśnialność algorytmów oraz spopularyzować rozwiązania wśród użytkowników. Projekt XIDHIR dąży do opracowania interaktywnych modeli, które usprawnią odtwarzanie obrazów wchodzących w skład dziedzictwa cyfrowego i zapewnią doskonałe rezultaty dzięki aktywnemu zaangażowaniu użytkowników w proces odtwarzania.

Cel

Digital heritage are computer-based materials of enduring value that should be kept for future generations, for example photographs and videos. As an asset of our times, historical photographs and videos can greatly benefit from digital restoration techniques, from colorization or color enhancement to the removal of scratches or other artefacts. In this project, we focus on two cases for digital heritage restoration: colorization and color image enhancement of old photographs and videos. Historically, image enhancement methods were rooted in tailor-made priors using well-understood physics and/or statistical models. Now, deep learning approaches leverage large amounts of data to train generative models that can hallucinate on the generated images. However, the useful versatility of deep learning approaches faces two main problems:
(a) Deep models are black boxes whose inner behaviors are difficult to interpret, which is an important drawback when assessing their reliability, studying failure cases, and improving their robustness. This hinders their direct adoption in the digital heritage restoration process. Thus, explainability is a highly desirable characteristic for image enhancement models.
(b) Image enhancement problems are ill-conditioned, especially for digital heritage photos (e.g. there are many plausible colorizations of a grayscale image). Yet, users rarely have a say in the process of enhancement with deep models, which is typically decided by the model based on statistical decisions. Thus, physically plausible or realistic solutions should be favored, as well as allowing the end user to explore and guide the algorithm towards the intended solution.
In this project, we propose to confront the ill-posed nature of image enhancement problems by a comprehensive involvement of the user in the loop, shifting the important decision-making from the model to the user. This will lead to results that are user oriented and achieve higher quality.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2023-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

CENTRE DE VISIO PER COMPUTADOR
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 165 312,96
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0