Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Classifying the conjugacy relation of the group of C2 diffeomorphisms of the unit circle, and characterizing isometry groups of separable ultrametric spaces

Cel

The first part of the project is concerned with a classification of the orbit equivalence relation E coming from the conjugation action of the group of all diffeomorphisms of class C2 on itself. A well-known example given by Arnold shows that there exist C2 diffeomorphisms of the circle with equal rotation numbers, which are not conjugate by any smooth mapping. This raises a natural question as to how complicated relation E is. Methods coming from Borel reducibility theory will be used to estimate lower and upper bounds for complexity of E. In particular, the following problems will be studied. Is E essentially more complicated than the identity relation? Is D reducible to an equivalence relation with countable equivalence classes? Can D be classified by the isomorphism relation on a class of countable models? The second part of the project is a continuation of a line of research initiated by Gao and Kechris. It is devoted to studying Polish ultrametric spaces, that is, metric spaces satisfying a strong version of the triangle inequality, and their isometry groups. A structure theorem, proved by the executioner of the project, representing each separable ultrametric space as a 'bundle' with an ultrametric base and with homogeneous fibers will be further investigated. Its detailed study and analysis of the limit behavior of involved quotient maps will be used to characterize Polish ultrametric spaces and their isometry groups. This will provide an answer to a question posed by Gao nad Kechris. The implementation of the project will allow the executioner of the project to develop a solid research portfolio in a lively developing field of mathematics, contributing in this way to their lasting reintegration, and to European scientific excellence.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2007-4-3-IRG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IRG - International Re-integration Grants (IRG)

Koordynator

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
Wkład UE
€ 75 000,00
Adres
UL. SNIADECKICH 8
00-656 Warszawa
Polska

Zobacz na mapie

Region
Makroregion województwo mazowieckie Warszawski stołeczny Miasto Warszawa
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0