Skip to main content
European Commission logo print header

Neuron Networking with Nano Bridges via the Synthesis and Integration of Functionalized Carbon Nanotubes


We propose the development of novel nanodevices, such as nanoscale bridges and nanovectors, based on functionalized carbon nanotubes (CNT) for manipulating neurons and neuronal network activity in vitro. The main aim is to put forward innovative solutions that have the potential to circumvent the problems currently faced by spinal cord lesions or by neurodegenerative diseases. The unifying theme is to use recent advances in chemistry and nanotechnology to gain insight into the functioning of hybrid neuronal/CNT networks, relevant for the development of novel implantable devices to control neuronal signaling and improve synapse formation in a controlled fashion. The proposal s core strategy is to exploit the expertise of the PI in the chemical control of CNT properties to develop devices reaching various degrees of functional integration with the physiological electrical activity of cells and their networks, and to understand how such global dynamics are orchestrated when integrated by different substrates. An unconventional strategy will be represented by the electrical characterization of micro and nano patterned substrates by AFM and conductive tip AFM, both before and after neurons have grown on the substrates. We will also use the capability of AFM to identify critical positions in the neuronal network, while delivering time-dependent chemical stimulations. We will apply nanotechnology to contemporary neuroscience in the perspective of novel neuro-implantable devices and drug nanovectors, engineered to treat neurological and neurodegenerative lesions. The scientific strategy at the core of the proposal is the convergence between nanotechnology, chemistry and neurobiology. Such convergence, beyond helping understand the functioning and malfunctioning of the brain, can stimulate further research in this area and may ultimately lead to a new generation of nanomedicine applications in neurology and to new opportunities for the health care industry.

Zaproszenie do składania wniosków

Zobacz inne projekty w ramach tego zaproszenia

System finansowania

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

Wkład UE
€ 2 500 000,00
34127 Trieste

Zobacz na mapie

Nord-Est Friuli-Venezia Giulia Trieste
Rodzaj działalności
Higher or Secondary Education Establishments
Kierownik naukowy
Maurizio Prato (Prof.)
Kontakt administracyjny
Maria Teresa Grione (Ms.)
Koszt całkowity
Brak danych

Beneficjenci (1)