European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Nanopatterned scaffolds for active myocardial implants

Cel

Cell therapy and tissue engineering are emerging as novel therapeutic paradigms for myocardial repair. The rationale behind the cell replacement approach is based on the assumption that an increase in the number of functional cardiomyocytes within the diseased area may improve the mechanical properties of this compromised region. A common strategy attempts to initially combine, ex-vivo, cells with polymeric scaffolds to generate a construct, followed by in-vivo engraftment onto the heart muscle. Despite first encouraging results, the clinical utility of these approaches is hampered by the paucity of cell sources for human cardiomyocytes and by the limited direct functional integration of grafted cells and high degree of donor cell death following cell grafting in host myocardial tissue. NanoCARD will create a conceptually new type of biomimetic nanoscopically designed scaffold able to generate cardiac tissue replacement for the myocardium. Within our project we will design novel cellular environments with broad but precisely-controlled diversity in chemical composition, physical properties, and geometrical spacing of individual peptides on the nanometre scale. The capability of these environments to regulate cell response will be explored by high throughput approaches using a new chip technology developed within the project. An additional unique concept for controlling the function of cardiac cells is given by applying periodic mechanical strain in the range of heart frequency during the tissue engineering process. The knowledge gained within NanoCARD will be translated into the design and production of a novel biocompatible nanostructured device (therapeutic surface) with a desired bioactivity inducing specific behaviour of endothelial cells and cardiomyocytes to revolutionise treatment of myocardial defects. The inclusion of relevant companies in the consortium assures the identification of opportunities for the intended product developments.

Zaproszenie do składania wniosków

FP7-NMP-2008-SMALL-2
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Wkład UE
€ 794 600,00
Adres
HOFGARTENSTRASSE 8
80539 Munchen
Niemcy

Zobacz na mapie

Region
Bayern Oberbayern München, Kreisfreie Stadt
Rodzaj działalności
Research Organisations
Kontakt administracyjny
Joachim Spatz (Prof.)
Linki
Koszt całkowity
Brak danych

Uczestnicy (12)