Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-30

Multi-parameter Multi-fractional Brownian Motion

Cel

"The main objective of this proposal is to study the concept of ""multi-parameter multi-fractional Brownian motion"" and its generalizations. We define this process, prove existence and give some examples. We study its properties, especially long-range memory, different kinds of properties which replace the stationarity and the self-similarity. Some integral representations will be presented and we will try to find characterizations of this process. We develop stochastic calculus for multi-parameter multi-fractional Brownian motion and different types of set-indexed martingales. We will investigate: regularity properties of stochastic integrals with respect to multi-fractional random fields; solvability and regularity of solutions of stochastic partial differential equations with fractional and multi-fractional random noise, the properties of solutions of multi-parameter stochastic differential equations with fractional fields, e.g. Holder continuity and smoothness properties; local times and occupation densities of multi-parameter fractional processes; classical problems of financial mathematics – absence of arbitrage, option pricing, optimal investment strategies, optimal exercise of American options – in a long-range dependence framework; mixed fractional/stable limit models; limit theorems for the products of random fields with weak and long range dependence and multi-fractal log-infinite divisible scenarios; formulation and characterisation of a class of spatial multi-fractional models and scaling law results for the variable-order fractional diffusion equations with random data; development of a theory of statistical estimation for the considered models. Finally, we will suggest some applied problems in which the multi-parameter multi-fractional Brownian motion can be used."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-IRSES-2008
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IRSES - International research staff exchange scheme (IRSES)

Koordynator

BAR ILAN UNIVERSITY
Wkład UE
€ 90 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0