European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Lithium-Air Batteries with split Oxygen Harvesting and Redox processes

Cel

LABOHR aims to develop Ultra High-Energy battery systems for automotive applications making use of lithium or novel alloy anodes, innovative O2 cathode operating in the liquid phase and a novel system for harvesting O2 from air, which can be regenerated during their operative life without need of disassembling. LABOHR has 5 key objectives: (i) development of a green and safe electrolyte chemistry based on non-volatile, non-flammable ionic liquids (ILs); (ii) use of novel nanostructured high capacity anodes in combination with ionic liquid-based electrolytes; (iii) use of novel 3-D nanostructured O2 cathodes making use of IL-based O2 carriers/electrolytes with the goal to understand and improve the electrode and electrolyte properties and thus their interactions; (iv) development of an innovative device capable of harvesting dry O2 from air; and (v) construction of fully integrated rechargeable lithium-Air cells with optimized electrodes, electrolytes, O2-harvesting system and other ancillaries. Accordingly, LABOHR aims to overcome the energy limitation for the application of the present Li-ion technology in electric vehicles with the goal to: 1- perform frontier research and breakthrough work to position Europe as a leader in the developing field of high energy, environmentally benign and safe batteries and to maintain the leadership in the field of ILs; 2- develop appropriate electrolytes and nanostructured electrodes which combination allows to realize ultra-high energy batteries; 3- develop a battery system concept as well as prototypes of the key components (cell and O2-harvesting device) to verify the feasibility of automotive systems with: A) specific energy and power higher than 500 Wh/kg and 200 W/kg; B) coulombic efficiency higher than 99% during cycling; C) cycle life of 1,000 cycles with 40% maximum loss of capacity, cycling between 90% and 10% SOC; and D) evaluate their integration in electric cars and renewable energy systems.

Zaproszenie do składania wniosków

FP7-2010-GC-ELECTROCHEMICAL-STORAGE
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

Westfälische Wilhelms-Universität Münster
Wkład UE
€ 564 512,86
Adres
SCHLOSSPLATZ 2
48149 MUENSTER
Niemcy

Zobacz na mapie

Region
Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Katharina Steinberg (Dr.)
Linki
Koszt całkowity
Brak danych

Uczestnicy (10)