Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Zawartość zarchiwizowana w dniu 2024-06-18

Hybrid Semiconductors: Design Principles and Material Applications

Cel

Materials chemistry is generally focused on inorganic or organic systems, and their combination is an emerging area with many exploratory experimental studies. Self-assembling hybrid organic-inorganic networks offer immense potential for functionalising material properties for a wide scope of applications including solar cells, solid-state lighting, gas sensors and transparent conductors. The flexibility of combining two distinct material classes into a single system provides an almost infinite number of chemical and structural possibilities, but there is currently no systematic approach established for designing new compositions and configurations that match the criteria required for technological applications, e.g. high chemical stability and low electrical resistivity.

Modern computational chemistry approaches enable the accurate prediction of the structural and electronic properties of materials at an atomistic scale. This project will apply state-of-the-art simulation techniques to: (i) Develop design principles for forming hybrid solids and tuning their physicochemical properties; (ii) Construct and characterise prototypal material systems tailored for technological applications.

The project will develop fundamental design rules for hybrid systems: the effects of functional groups and network dimensionality will be assessed in relation to the pertinent material properties. The rules can then be applied to construct prototypes for optoelectronic applications, with the candidates being tested through an established experimental collaboration. These challenging goals will require a combination of bulk, surface and excited-state calculations, using both classical and electronic structure simulation techniques, which draw directly from my previous experiences, and will utilise the existing high-performance computing infrastructure in the UK. The principal outcome of the project will be to enhance our understanding of this new field of materials science.

Zaproszenie do składania wniosków

ERC-2011-StG_20101014
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

UNIVERSITY OF BATH
Wkład UE
€ 996 374,40
Adres
CLAVERTON DOWN
BA2 7AY Bath
Zjednoczone Królestwo

Zobacz na mapie

Region
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bath and North East Somerset, North Somerset and South Gloucestershire
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Hazel Wallis (Ms.)
Kierownik naukowy
Aron Walsh (Dr.)
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)