Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Advanced Data-Driven Black-box modelling

Cel

Making accurate predictions is a crucial factor in many systems (such as in modelling energy consumption, power load forecasting, traffic networks, process industry, environmental modelling, biomedicine, brain-machine interfaces) for cost savings, efficiency, health, safety and organizational purposes. In this proposal we aim at realizing a new generation of more advanced black-box modelling techniques for estimating predictive models from measured data. We will study different optimization modelling frameworks in order to obtain improved black-box modelling approaches. This will be done by specifying models through constrained optimization problems by studying different candidate core models (parametric models, support vector machines and kernel methods) together with additional sets of constraints and regularization mechanisms. Different candidate mathematical frameworks will be considered with models that possess primal and (Lagrange) dual model representations, functional analysis in reproducing kernel Hilbert spaces, operator splitting and optimization in Banach spaces. Several aspects that are relevant to black-box models will be studied including incorporation of prior knowledge, structured dynamical systems, tensorial data representations, interpretability and sparsity, and general purpose optimization algorithms. The methods should be suitable for handling larger data sets and high dimensional input spaces. The final goal is also to realize a next generation software tool (including symbolic generation of models and handling different supervised and unsupervised learning tasks, static and dynamic systems) that can be generically applied to data from different application areas. The proposal A-DATADRIVE-B aims at getting end-users connected to the more advanced methods through a user-friendly data-driven black-box modelling tool. The methods and tool will be tested in connection to several real-life applications.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2011-ADG_20110209
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

KATHOLIEKE UNIVERSITEIT LEUVEN
Wkład UE
€ 2 485 800,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0