European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

"Frontiers in Plasmonics: Transformation Optics, Quantum and Non-linear phenomena"

Cel

"The overall objective of this proposal is to work in depth along three ground-breaking lines of research that are at the cutting edge of the current research in Plasmonics. These three subjects have strong overlap and are:

1) Non-linear phenomena and Plasmonic lasing: the introduction of optical-gain media into plasmonic waveguides has proven to be a feasible way to overcome the inherent losses within the metal. In order to reveal the physics behind this phenomenon, we intend to develop a new ab-initio theoretical framework that should combine the resolution of classical Maxwell’s equations with a quantum-mechanical treatment of the molecules forming the optical-gain medium. Within this formalism we also aim to analyze in depth very recent proposals of plasmon-based nano-lasers, the design of active devices based on surface plasmons and the use of optical-gain media in metallic metamaterials.

2) Transformation Optics for Plasmonics: we plan to apply the idea of Transformation Optics in connection with the concept of Metamaterials to devise new strategies for molding the propagation of surface plasmons in nanostructured metal surfaces. Additionally, we will use the Transformation Optics formalism to treat quasi-analytically non-local effects in plasmonic structures.

3) Quantum Plasmonics: several aspects of this new line of research will be tackled. Among others, fundamental studies of the coherence of surface plasmons that propagate along different metal waveguides after being generated by quantum emitters. A very promising line of research to explore will be plasmon-mediated interaction between qubits, taking advantage of the quasi-one-dimensional character of plasmonic waveguides. Strong-coupling phenomena between molecules and surface plasmons and the design of practical scenarios in which entanglement of surface plasmons could take place will be also addressed. We also plan to study how to generate surface plasmons with orbital angular momentum."

Zaproszenie do składania wniosków

ERC-2011-ADG_20110209
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

UNIVERSIDAD AUTONOMA DE MADRID
Wkład UE
€ 1 347 600,00
Adres
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 Madrid
Hiszpania

Zobacz na mapie

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
María Del Carmen Puerta Fernández (Ms.)
Kierownik naukowy
Francisco José Garcia Vidal (Prof.)
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)