Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Automorphic Forms and Moduli Spaces of Galois Representations

Cel

I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.

The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.

The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2012-StG_20111012
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Wkład UE
€ 1 131 339,00
Adres
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Zjednoczone Królestwo

Zobacz na mapie

Region
London Inner London — West Westminster
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0