Obiettivo
The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.
I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali scienze fisiche meccanica classica meccanica dei fluidi dinamica dei fluidi
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
ERC-2012-StG_20111012
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Istituzione ospitante
28049 MADRID
Spagna
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.