Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Geometric function theory, inverse problems and fluid dinamics

Cel

The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.

I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2012-StG_20111012
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

UNIVERSIDAD AUTONOMA DE MADRID
Wkład UE
€ 1 121 400,00
Adres
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 MADRID
Hiszpania

Zobacz na mapie

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0